Genome-wide miRNA profiling reinforces the importance of miR-9 in human papillomavirus associated oral and oropharyngeal head and neck cancer

. 2019 Feb 19 ; 9 (1) : 2306. [epub] 20190219

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30783190
Odkazy

PubMed 30783190
PubMed Central PMC6381209
DOI 10.1038/s41598-019-38797-z
PII: 10.1038/s41598-019-38797-z
Knihovny.cz E-zdroje

Head and neck cancer is the sixth most common malignancy worldwide, predominantly developing from squamous cell epithelia (HNSCC). The main HNSCC risk factors are tobacco, excessive alcohol use, and the presence of human papillomavirus (HPV). HPV positive (+) cancers are etiologically different from other HNSCC and often show better prognosis. The current knowledge regarding HNSCC miRNA profiles is still incomplete especially in the context of HPV+ cancer. Thus, we analyzed 61 freshly collected primary oral (OSCC) and oropharyngeal (OPSCC) SCC samples. HPV DNA and RNA was found in 21% cases. The Illumina whole-genome small-RNA profiling by next-generation sequencing was done on 22 samples and revealed 7 specific miRNAs to HPV+ OSCC, 77 to HPV+ OPSCC, and additional 3 shared with both; 51 miRNAs were specific to HPV- OPSCC, 62 to HPV- OSCC, and 31 shared with both. The results for 9 miRNAs (miR-9, -21, -29a, -100, -106b, -143 and -145) were assessed by reverse transcription-quantitative polymerase chain reaction on the whole study population. The data was additionally confirmed by reanalyzing publicly available miRNA sequencing Cancer Genome Atlas consortium (TCGA) HNSCC data. Cell signaling pathway analysis revealed differences between HPV+ and HPV- HNSCC. Our findings compared with literature data revealed extensive heterogeneity of miRNA deregulation with only several miRNAs consistently affected, and miR-9 being the most likely HPV related miRNA.

Zobrazit více v PubMed

Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet Lond. Engl. 2008;371:1695–1709. doi: 10.1016/S0140-6736(08)60728-X. PubMed DOI PMC

Leemans CR, Braakhuis BJM, Brakenhoff RH. The molecular biology of head and neck cancer. Nat. Rev. Cancer. 2011;11:9–22. doi: 10.1038/nrc2982. PubMed DOI

Vigneswaran N, Williams MD. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. N. Am. 2014;26:123–141. doi: 10.1016/j.coms.2014.01.001. PubMed DOI PMC

Fakhry C, et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014;32:3365–3373. doi: 10.1200/JCO.2014.55.1937. PubMed DOI PMC

Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat. Rev. Cancer. 2018;18:269–282. doi: 10.1038/nrc.2018.11. PubMed DOI

Yan W, Wistuba II, Emmert-Buck MR, Erickson HS. Squamous cell carcinoma–similarities and differences among anatomical sites. Am. J. Cancer Res. 2011;1:275. doi: 10.1158/1538-7445.AM2011-275. PubMed DOI PMC

Keck MK, et al. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015;21:870–881. PubMed

Croatian National Cancer Registry. Cancer Incidence in Croatia. 1–39 (Croatian Institute of Public Health 2018).

Albers AE, Qian X, Kaufmann AM, Coordes A. Meta analysis: HPV and p16 pattern determines survival in patients with HNSCC and identifies potential new biologic subtype. Sci. Rep. 2017;7:16715. doi: 10.1038/s41598-017-16918-w. PubMed DOI PMC

Taberna M, et al. Human papillomavirus-related oropharyngeal cancer. Ann. Oncol . Off. J. Eur. Soc. Med. Oncol. 2017;28:2386–2398. doi: 10.1093/annonc/mdx304. PubMed DOI

O’Sullivan B, et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 2016;17:440–451. doi: 10.1016/S1470-2045(15)00560-4. PubMed DOI

Lydiatt, W., O’Sullivan, B. & Patel, S. Major Changes in Head and Neck Staging for 2018. Am. Soc. Clin. Oncol. Educ. Book 505–514, 10.1200/EDBK-199697 (2018). PubMed

TCGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature517, 576–582 (2015). PubMed PMC

Masuda M, Wakasaki T, Toh S. Stress-triggered atavistic reprogramming (STAR) addiction: driving force behind head and neck cancer? Am. J. Cancer Res. 2016;6:1149–1166. PubMed PMC

Jung AC, et al. A Poor Prognosis Subtype of HNSCC Is Consistently Observed across Methylome, Transcriptome, and miRNome Analysis. Clin. Cancer Res. 2013;19:4174–4184. doi: 10.1158/1078-0432.CCR-12-3690. PubMed DOI

Wang Y, Wang J, Huang Y. MicroRNAs as new biomarkers for human papilloma virus related head and neck cancers. Cancer Biomark. Sect. Dis. Markers. 2015;15:213–218. PubMed

Liu X, Chen Z, Yu J, Xia J, Zhou X. MicroRNA Profiling and Head and Neck Cancer. Comp. Funct. Genomics. 2009;2009:1–11. doi: 10.1155/2009/837514. PubMed DOI PMC

Kaczkowski, B., Morevati, M., Rossing, M., Cilius, F. & Norrild, B. A Decade of Global mRNA and miRNA Profiling of HPV-Positive Cell Lines and Clinical Specimens. Open Virol. J. 6 (2012). PubMed PMC

John K, Wu J, Lee B-W, Farah CS. MicroRNAs in Head and Neck Cancer. Int. J. Dent. 2013;2013:1–12. doi: 10.1155/2013/650218. PubMed DOI PMC

Koshizuka K, et al. The microRNA signatures: aberrantly expressed microRNAs in head and neck squamous cell carcinoma. J. Hum. Genet. 2017;62:3–13. doi: 10.1038/jhg.2016.105. PubMed DOI

Sannigrahi, M. K., Sharma, R., Panda, N. K. & Khullar, M. Role of Non-coding RNAs in Head and Neck Squamous Cell Carcinoma: a narrative review. Oral Dis., 10.1111/odi.12782 (2017). PubMed

Vojtechova Z, et al. Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones. BMC Cancer. 2016;16:382. doi: 10.1186/s12885-016-2430-y. PubMed DOI PMC

Milutin-Gašperov N, Sabol I, Halec G, Matovina M, Grce M. Retrospective study of the prevalence of high-risk human papillomaviruses among Croatian women. Coll. Antropol. 2007;31:89–96. PubMed

Smeets SJ, et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int. J. Cancer J. Int. Cancer. 2007;121:2465–2472. PubMed

Lesnikova I, Lidang M, Hamilton-Dutoit S, Koch J. Rapid, sensitive, type specific PCR detection of the E7 region of human papillomavirus type 16 and 18 from paraffin embedded sections of cervical carcinoma. Infect. Agent. Cancer. 2010;5:2. doi: 10.1186/1750-9378-5-2. PubMed DOI PMC

Ang KK, et al. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N. Engl. J. Med. 2010;363:24–35. doi: 10.1056/NEJMoa0912217. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Vincent M, Hansen NR. Sparse group lasso and high dimensional multinomial classification. Comput. Stat. Data Anal. 2014;71:771–786. doi: 10.1016/j.csda.2013.06.004. DOI

Perell K, et al. Development and validation of a microRNA based diagnostic assay for primary tumor site classification of liver core biopsies. Mol. Oncol. 2015;9:68–77. doi: 10.1016/j.molonc.2014.07.015. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Oliveros, J. V. An interactive tool for comparing lists with Venn’s diagrams (2007).

Vlachos IS, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43:W460–W466. doi: 10.1093/nar/gkv403. PubMed DOI PMC

Ogata H, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27:29–34. doi: 10.1093/nar/27.1.29. PubMed DOI PMC

Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of Human Papillomavirus–Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015;33:3235–3242. doi: 10.1200/JCO.2015.61.6995. PubMed DOI PMC

Cloonan N, et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 2011;12:R126. doi: 10.1186/gb-2011-12-12-r126. PubMed DOI PMC

Guo L, Yu J, Liang T, Zou Q. miR-isomiRExp: a web-server for the analysis of expression of miRNA at the miRNA/isomiR levels. Sci. Rep. 2016;6:23700. doi: 10.1038/srep23700. PubMed DOI PMC

Telonis AG, et al. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 2017;45:2973–2985. doi: 10.1093/nar/gkx082. PubMed DOI PMC

Vojtechova Z, et al. Analysis of the integration of human papillomaviruses in head and neck tumours in relation to patients’ prognosis. Int. J. Cancer. 2016;138:386–395. doi: 10.1002/ijc.29712. PubMed DOI

Nowek K, Wiemer EAC, Jongen-Lavrencic M. The versatile nature of miR-9/9* in human cancer. Oncotarget. 2018;9:20838–20854. doi: 10.18632/oncotarget.24889. PubMed DOI PMC

Wang, J.-Y. et al. MiR-29a: a potential therapeutic target and promising biomarker in tumors. Biosci. Rep. 38 (2018). PubMed PMC

Pardini B, et al. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer. 2018;18:696. doi: 10.1186/s12885-018-4590-4. PubMed DOI PMC

Citron F, et al. An Integrated Approach Identifies Mediators of Local Recurrence in Head and Neck Squamous Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:3769–3780. PubMed PMC

Salazar C, et al. A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. Dordr. 2014;37:331–338. doi: 10.1007/s13402-014-0188-2. PubMed DOI

Minor J, et al. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol. 2012;48:73–78. doi: 10.1016/j.oraloncology.2011.11.006. PubMed DOI PMC

Liu W, et al. Activation of miR-9 by human papillomavirus in cervical cancer. Oncotarget. 2014;5:11620–11630. PubMed PMC

Thomas M, et al. Human papillomaviruses, cervical cancer and cell polarity. Oncogene. 2008;27:7018–7030. doi: 10.1038/onc.2008.351. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...