Fibrinogen-related proteins in ixodid ticks
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21729260
PubMed Central
PMC3141747
DOI
10.1186/1756-3305-4-127
PII: 1756-3305-4-127
Knihovny.cz E-zdroje
- MeSH
- anatomické struktury zvířat chemie MeSH
- Dermacentor chemie MeSH
- fibrinogen imunologie MeSH
- fikoliny MeSH
- glykoproteiny imunologie metabolismus MeSH
- hemaglutininy imunologie metabolismus MeSH
- hmyzí proteiny imunologie metabolismus MeSH
- lektiny imunologie metabolismus MeSH
- lidé MeSH
- metabolismus sacharidů MeSH
- Ornithodoros chemie MeSH
- protilátky imunologie MeSH
- Rhipicephalus chemie MeSH
- vazba proteinů MeSH
- zkřížené reakce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibrinogen MeSH
- glykoproteiny MeSH
- hemaglutininy MeSH
- hmyzí proteiny MeSH
- lektiny MeSH
- protilátky MeSH
BACKGROUND: Fibrinogen-related proteins with lectin activity are believed to be part of the tick innate immune system. Several fibrinogen-related proteins have been described and characterised mainly on the basis of their cDNA sequences while direct biochemical evidence is missing. One of them, the haemolymph lectin Dorin M from the tick Ornithodoros moubata was isolated and characterised in more depth. RESULTS: Several fibrinogen-related proteins were detected in the haemolymph of ixodid ticks Dermacentor marginatus, Rhipicephalus appendiculatus, R. pulchellus, and R. sanguineus. These proteins were recognised by sera directed against the tick lectin Dorin M and the haemagglutination activity of the ticks R. appendiculatus and D. marginatus. Cross-reactivity of the identified proteins with antibodies against the fibrinogen domain of the human ficolin was also shown. The carbohydrate-binding ability of tick haemolymph was confirmed by haemagglutination activity assays, and this activity was shown to be inhibited by neuraminic acid and sialylated glycoproteins as well as by N-acetylated hexosamines. The fibrinogen-related proteins were shown to be glycosylated and they were localised in salivary glands, midguts, and haemocytes of D. marginatus. Hemelipoglycoprotein was also recognised by sera directed against the fibrinogen-related proteins in all three Rhipicephalus species as well as in D. marginatus. However, this protein does not contain the fibrinogen domain and thus, the binding possibly results from the structure similarity between hemelipoglycoprotein and the fibrinogen domain. CONCLUSIONS: The presence of fibrinogen-related proteins was shown in the haemolymph of four tick species in high abundance. Reactivity of antibodies directed against ficolin or fibrinogen-related proteins with proteins which do not contain the fibrinogen domain points out the importance of sequence analysis of the identified proteins in further studies. Previously observed expression of fibrinogen-related proteins in haemocytes together with the results of this study suggest involvement of fibrinogen-related proteins in tick immunity processes. Thus, they have potential as targets for anti-tick vaccines and as antimicrobial proteins in pharmacology. Research on fibrinogen-related proteins could reveal further details of tick innate immunity processes.
Faculty of Sciences University of South Bohemia Branisovska 31 37005 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Sonenshine DE. Biology of ticks. Vol. 2. New York: Oxford University Press; 1993.
Piesman J, Gage KL. In: The biology of disease vectors. Beaty BJ, Marquardt WC, editor. Niwot, CO: University of Colorado Press; 1996. Ticks and mites and the agents they transmit; pp. 160–174.
Donohue KV, Khalil SMS, Mitchell RD, Sonenshine DE, Roe RM. Molecular characterization of the major hemelipoglycoprotein in ixodid ticks. Insect Mol Biol. 2008;17(3):197–208. doi: 10.1111/j.1365-2583.2008.00794.x. PubMed DOI
Dupejova J, Sterba J, Vancova M, Grubhoffer L. Hemelipoglycoprotein from the ornate sheep tick, Dermacentor marginatus: structural and functional characterization. Parasit Vectors. 2011;4:4. doi: 10.1186/1756-3305-4-4. PubMed DOI PMC
Johns R, Sonenshine DE, Hynes WL. Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis. Insect Biochem Molec. 2001;31(9):857–865. doi: 10.1016/S0965-1748(01)00031-5. PubMed DOI
Ceraul SM, Sonenshine DE, Ratzlaff RE, Hynes WL. An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari: Ixodidae) Insect Biochem Molec. 2003;33(11):1099–1103. doi: 10.1016/S0965-1748(03)00122-X. PubMed DOI
Chrudimska T, Chrudimsky T, Golovchenko M, Rudenko N, Grubhoffer L. New defensins from hard and soft ticks: Similarities, differences, and phylogenetic analyses. Vet Parasitol. 2010;167(2-4):298–303. doi: 10.1016/j.vetpar.2009.09.032. PubMed DOI
V K, Kopacek P, Grubhoffer L. Isolation and characterization of Dorin M, a lectin from plasma of the soft tick Ornithodoros moubata. Insect Biochem Molec. 2000;30(3):195–205. doi: 10.1016/S0965-1748(99)00107-1. PubMed DOI
Rego ROM, Kovar V, Kopacek P, Weise C, Man P, Sauman I, Grubhoffer L. The tick plasma lectin, Dorin M, is a fibrinogen-related molecule. Insect Biochem Molec. 2006;36(4):291–299. doi: 10.1016/j.ibmb.2006.01.008. PubMed DOI
Natori S. Insect lectins and innate immunity. Adv Exp Med Biol. 2001;484:223–228. PubMed
Grubhoffer L, Kovar V, Rudenko N. Tick lectins: structural and functional properties. Parasitology. 2004;129:S113–S125. doi: 10.1017/S0031182004004858. PubMed DOI
Matsushita M, Fujita T. The role of ficolins in innate immunity. Immunobiology. 2002;205(4-5):490–497. doi: 10.1078/0171-2985-00149. PubMed DOI
Adema CM, Hertel LA, Miller RD, Loker ES. A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc Natl Acad Sci USA. 1997;94(16):8691–8696. doi: 10.1073/pnas.94.16.8691. PubMed DOI PMC
Gokudan S, Muta T, Tsuda R, Koori K, Kawahara T, Seki N, Mizunoe Y, Wai SN, Iwanaga S, Kawabata S. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci USA. 1999;96(18):10086–10091. doi: 10.1073/pnas.96.18.10086. PubMed DOI PMC
Grubhoffer L, Veres J, Dusbábek F. In: Modern Acarology. Dusbábek F, Bukva V, editor. Vol. 2. Hague: SPBA Academic Publishing; 1991. Lectins as the molecular factors of recognition and defence reactions in ticks; pp. 381–388.
Kuhn KH, Uhlir J, Grubhoffer L. Ultrastructural localization of a sialic acid-specific hemolymph lectin in the hemocytes and other tissues of the hard tick Ixodes ricinus (Acari; Chelicerata) Parasitol Res. 1996;82(3):215–221. doi: 10.1007/s004360050098. PubMed DOI
Huang XH, Tsuji N, Miyoshi T, Nakamura-Tsuruta S, Hirabayashi J, Fujisaki K. Molecular characterization and oligosaccharide-binding properties of a galectin from the argasid tick Ornithodoros moubata. Glycobiology. 2007;17(3):313–323. PubMed
Grubhoffer L, Hajdusek O, Vancova M, Sterba J, Rudenko N. Glycobiochemistry of ticks, vectors of infectious diseases: carbohydrate-binding proteins and glycans. Febs J. 2009;276:141–141.
Man P, Kovar V, Sterba J, Strohalm M, Kavan D, Kopacek P, Grubhoffer L, Havlicek V. Deciphering Dorin M glycosylation by mass spectrometry. Eur J Mass Spectrom (Chichester, Eng) 2008;14(6):345–354. PubMed
Grubhoffer L, Kovář V. In: Techniques in insect immunology FITC-5. Wiesner A, Dunphy GG, Marmaras VJ, Morishima I, Sugumaran M, Yamakawa M, editor. New Jersey: SOS Publications; 1998. Arthropod lectins: affinity approaches in the analysis and preparation of carbohydrate binding proteins; pp. 47–57.
Kamwendo SP, Ingram GA, Musisi FL, Molyneux DH. Haemagglutinin activity in tick (Rhipicephalus appendiculatus) haemolymph and extracts of gut and salivary gland. Ann Trop Med Parasitol. 1993;87(3):303–305. PubMed
Sebitosi ENK, Godwin GP, Young AS, Agbede RIS. Lectins in the brown ear tick, Rhipicephalus appendiculatus: detection and partial characterization. International Journal of Acarology. 1998;24(2):159–166. doi: 10.1080/01647959808684145. DOI
Gabius HJ, Siebert HC, Andre S, Jimenez-Barbero J, Rudiger H. Chemical biology of the sugar code. Chembiochem. 2004;5(6):740–764. doi: 10.1002/cbic.200300753. PubMed DOI
Sterba J, Dupejova J, Fiser M, Golovchenko M, Rudenko N, Grubhoffer L. Identification and characterisation of lectins in several tick species. Febs J. 2009;276:88–88.
Sharon N, Lis H. Lectins. New York: Springer-Verlag New York, Inc; 2007.
Pedra JH, Narasimhan S, Rendic D, DePonte K, Bell-Sakyi L, Wilson IB, Fikrig E. Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell Microbiol. 2010;12(9):1222–1234. doi: 10.1111/j.1462-5822.2010.01464.x. PubMed DOI PMC
Kamwendo SP, Ingram GA, Musisi FL, Trees AJ, Molyneux DH. Characteristics of tick, Rhipicephalus appendiculatus, glands distinguished by surface lectin binding. Ann Trop Med Parasitol. 1993;87(5):525–535. PubMed
Zhang SC, Li ZJ, Zhang J, Liu M, Liu ZH. Vitellogenin is a cidal factor capable of killing bacteria via interaction with lipopolysaccharide and lipoteichoic acid. Mol Immunol. 2009;46(16):3232–3239. doi: 10.1016/j.molimm.2009.08.006. PubMed DOI
Laemmli UK. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature. 1970;227(5259):680–&. doi: 10.1038/227680a0. PubMed DOI
Towbin H, Staehelin T, Gordon J. Electrophoretictransfer of proteins from polyacrylamide gels to nitrocellulose sheets - procedure and some applications. Proc Natl Acad Sci USA. 1979;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC
A bite so sweet: the glycobiology interface of tick-host-pathogen interactions
Interaction of the tick immune system with transmitted pathogens