The Circadian Clock, the Immune System, and Viral Infections: The Intricate Relationship Between Biological Time and Host-Virus Interaction

. 2020 Jan 27 ; 9 (2) : . [epub] 20200127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32012758

Grantová podpora
grant from the Italian Ministry of Health (Ricerca Corrente 2018, 2019) "5x1000" voluntary contribution
CZ.02.1.01/0.0/0.0/15_003/0000492 European Social Fund and European Regional Development Fund - Project MAGNET
NV18-03-00058 Ministry of Health of the Czech Republic
FKZ031A316 German Federal Ministry of Education and Research (BMBF)-eBio-CIRSPLICE
09/2017 Dr. Rolf M. Schwiete Stiftung

Living beings spend their lives and carry out their daily activities interacting with environmental situations that present space-time variations and that involve contact with other life forms, which may behave as commensals or as invaders and/or parasites. The characteristics of the environment, as well as the processes that support the maintenance of life and that characterize the execution of activities of daily life generally present periodic variations, which are mostly synchronized with the light-dark cycle determined by Earth's rotation on its axis. These rhythms with 24-h periodicity, defined as circadian, influence events linked to the interaction between hosts and hosted microorganisms and can dramatically determine the outcome of this interplay. As for the various pathological conditions resulting from host-microorganism interactions, a particularly interesting scenario concerns infections by viruses. When a viral agent enters the body, it alters the biological processes of the infected cells in order to favour its replication and to spread to various tissues. Though our knowledge concerning the mutual influence between the biological clock and viruses is still limited, recent studies start to unravel interesting aspects of the clock-virus molecular interplay. Three different aspects of this interplay are addressed in this mini-review and include the circadian regulation of both innate and adaptive immune systems, the impact of the biological clock on viral infection itself, and finally the putative perturbations that the virus may confer to the clock leading to its deregulation.

Zobrazit více v PubMed

Dunlap J.C. Molecular bases for circadian clocks. Cell. 1999;96:271–290. doi: 10.1016/S0092-8674(00)80566-8. PubMed DOI

Lowrey P.L., Takahashi J.S. Genetics of circadian rhythms in mammalian model organisms. Adv. Genet. 2011;74:175–230. PubMed PMC

von Schantz M. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J. Genet. 2008;87:513–519. doi: 10.1007/s12041-008-0074-7. PubMed DOI

Gachon F., Nagoshi E., Brown S.A., Ripperger J., Schibler U. The mammalian circadian timing system: From gene expression to physiology. Chromosoma. 2004;113:103–112. doi: 10.1007/s00412-004-0296-2. PubMed DOI

Dardente H., Cermakian N. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 2007;24:195–213. doi: 10.1080/07420520701283693. PubMed DOI

Hastings M.H., Maywood E.S., Reddy A.B. Two decades of circadian time. J. Neuroendocrinol. 2008;20:812–819. doi: 10.1111/j.1365-2826.2008.01715.x. PubMed DOI

Damiola F., Le Minh N., Preitner N., Kornmann B., Fleury-Olela F., Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950–2961. doi: 10.1101/gad.183500. PubMed DOI PMC

Rajaratnam S.M., Arendt J. Health in a 24-h society. Lancet. 2001;358:999–1005. doi: 10.1016/S0140-6736(01)06108-6. PubMed DOI

Stokkan K.A., Yamazaki S., Tei H., Sakaki Y., Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291:490–493. doi: 10.1126/science.291.5503.490. PubMed DOI

Izumo M., Johnson C.H., Yamazaki S. Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: Temperature compensation and damping. Proc. Natl. Acad. Sci. USA. 2003;100:16089–16094. doi: 10.1073/pnas.2536313100. PubMed DOI PMC

Tsuchiya Y., Akashi M., Nishida E. Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts. Genes Cells. 2003;8:713–720. doi: 10.1046/j.1365-2443.2003.00669.x. PubMed DOI

Abrahamson E.E., Moore R.Y. Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916:172–191. doi: 10.1016/S0006-8993(01)02890-6. PubMed DOI

Stephan F.K., Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA. 1972;69:1583–1586. doi: 10.1073/pnas.69.6.1583. PubMed DOI PMC

Moore R.Y., Eichler V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–206. doi: 10.1016/0006-8993(72)90054-6. PubMed DOI

Lehman M.N., Silver R., Gladstone W.R., Kahn R.M., Gibson M., Bittman E.L. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosci. 1987;7:1626–1638. doi: 10.1523/JNEUROSCI.07-06-01626.1987. PubMed DOI PMC

Ralph M.R., Foster R.G., Davis F.C., Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247:975–978. doi: 10.1126/science.2305266. PubMed DOI

Sujino M., Masumoto K.H., Yamaguchi S., van der Horst G.T., Okamura H., Inouye S.T. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr. Biol. 2003;13:664–668. doi: 10.1016/S0960-9822(03)00222-7. PubMed DOI

Bjarnason G.A., Jordan R.C., Wood P.A., Li Q., Lincoln D.W., Sothern R.B., Hrushesky W.J., Ben-David Y. Circadian expression of clock genes in human oral mucosa and skin: Association with specific cell-cycle phases. Am. J. Pathol. 2001;158:1793–1801. doi: 10.1016/S0002-9440(10)64135-1. PubMed DOI PMC

Yamazaki S., Numano R., Abe M., Hida A., Takahashi R., Ueda M., Block G.D., Sakaki Y., Menaker M., Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288:682–685. doi: 10.1126/science.288.5466.682. PubMed DOI

Yoo S.H., Yamazaki S., Lowrey P.L., Shimomura K., Ko C.H., Buhr E.D., Siepka S.M., Hong H.K., Oh W.J., Yoo O.J., et al. Period2: Luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA. 2004;101:5339–5346. doi: 10.1073/pnas.0308709101. PubMed DOI PMC

McNamara P., Seo S.B., Rudic R.D., Sehgal A., Chakravarti D., FitzGerald G.A. Regulation of clock and mop4 by nuclear hormone receptors in the vasculature: A humoral mechanism to reset a peripheral clock. Cell. 2001;105:877–889. doi: 10.1016/S0092-8674(01)00401-9. PubMed DOI

King D.P., Takahashi J.S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 2000;23:713–742. doi: 10.1146/annurev.neuro.23.1.713. PubMed DOI

Antle M.C., Silver R. Orchestrating time: Arrangements of the brain circadian clock. Trends Neurosci. 2005;28:145–151. doi: 10.1016/j.tins.2005.01.003. PubMed DOI

Gooley J.J., Lu J., Chou T.C., Scammell T.E., Saper C.B. Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 2001;4:1165. doi: 10.1038/nn768. PubMed DOI

Hannibal J., Hindersson P., Knudsen S.M., Georg B., Fahrenkrug J. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 2002;22:RC191. doi: 10.1523/JNEUROSCI.22-01-j0002.2002. PubMed DOI PMC

Hannibal J., Hindersson P., Ostergaard J., Georg B., Heegaard S., Larsen P.J., Fahrenkrug J. Melanopsin is expressed in pacap-containing retinal ganglion cells of the human retinohypothalamic tract. Invest. Ophthalmol. Vis. Sci. 2004;45:4202–4209. doi: 10.1167/iovs.04-0313. PubMed DOI

Hattar S., Liao H.W., Takao M., Berson D.M., Yau K.W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–1070. doi: 10.1126/science.1069609. PubMed DOI PMC

Hannibal J., Moller M., Ottersen O.P., Fahrenkrug J. Pacap and glutamate are co-stored in the retinohypothalamic tract. J. Comp. Neurol. 2000;418:147–155. doi: 10.1002/(SICI)1096-9861(20000306)418:2<147::AID-CNE2>3.0.CO;2-#. PubMed DOI

Reppert S.M., Weaver D.R. Coordination of circadian timing in mammals. Nature. 2002;418:935–941. doi: 10.1038/nature00965. PubMed DOI

Hastings M.H., Herzog E.D. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythms. 2004;19:400–413. doi: 10.1177/0748730404268786. PubMed DOI

Moore R.Y., Speh J.C., Leak R.K. Suprachiasmatic nucleus organization. Cell Tissue Res. 2002;309:89–98. doi: 10.1007/s00441-002-0575-2. PubMed DOI

Moore R.Y., Speh J.C. Gaba is the principal neurotransmitter of the circadian system. Neurosci. Lett. 1993;150:112–116. doi: 10.1016/0304-3940(93)90120-A. PubMed DOI

Hirota T., Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog. Sci. 2004;21:359–368. doi: 10.2108/zsj.21.359. PubMed DOI

Takahashi J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017;18:164–179. doi: 10.1038/nrg.2016.150. PubMed DOI PMC

Reddy A.B., O’Neill J.S. Healthy clocks, healthy body, healthy mind. Trends Cell Biol. 2010;20:36–44. doi: 10.1016/j.tcb.2009.10.005. PubMed DOI PMC

Staels B. When the clock stops ticking, metabolic syndrome explodes. Nat. Med. 2006;12:54–55. doi: 10.1038/nm0106-54. PubMed DOI

Baraldo M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin. Drug Metab. Toxicol. 2008;4:175–192. doi: 10.1517/17425255.4.2.175. PubMed DOI

Levi F. Therapeutic implications of circadian rhythms in cancer patients. Novartis Found. Symp. 2000;227:119–136. PubMed

Levi F., Schibler U. Circadian rhythms: Mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 2007;47:593–628. doi: 10.1146/annurev.pharmtox.47.120505.105208. PubMed DOI

Scheiermann C., Kunisaki Y., Frenette P.S. Circadian control of the immune system. Nat. Rev. Immunol. 2013;13:190–198. doi: 10.1038/nri3386. PubMed DOI PMC

Fortier E.E., Rooney J., Dardente H., Hardy M.P., Labrecque N., Cermakian N. Circadian variation of the response of t cells to antigen. J. Immunol. 2011;187:6291–6300. doi: 10.4049/jimmunol.1004030. PubMed DOI

Gibbs J., Ince L., Matthews L., Mei J., Bell T., Yang N., Saer B., Begley N., Poolman T., Pariollaud M., et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 2014;20:919–926. doi: 10.1038/nm.3599. PubMed DOI PMC

Nguyen K.D., Fentress S.J., Qiu Y., Yun K., Cox J.S., Chawla A. Circadian gene bmal1 regulates diurnal oscillations of ly6c(hi) inflammatory monocytes. Science. 2013;341:1483–1488. doi: 10.1126/science.1240636. PubMed DOI PMC

Silver A.C., Arjona A., Walker W.E., Fikrig E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity. 2012;36:251–261. doi: 10.1016/j.immuni.2011.12.017. PubMed DOI PMC

Pick R., He W., Chen C.S., Scheiermann C. Time-of-day-dependent trafficking and function of leukocyte subsets. Trends Immunol. 2019;40:524–537. doi: 10.1016/j.it.2019.03.010. PubMed DOI

Arjona A., Sarkar D.K. Evidence supporting a circadian control of natural killer cell function. Brain Behav. Immun. 2006;20:469–476. doi: 10.1016/j.bbi.2005.10.002. PubMed DOI

Bollinger T., Leutz A., Leliavski A., Skrum L., Kovac J., Bonacina L., Benedict C., Lange T., Westermann J., Oster H., et al. Circadian clocks in mouse and human CD4+ T cells. PLoS ONE. 2011;6:e29801. doi: 10.1371/journal.pone.0029801. PubMed DOI PMC

Keller M., Mazuch J., Abraham U., Eom G.D., Herzog E.D., Volk H.D., Kramer A., Maier B. A circadian clock in macrophages controls inflammatory immune responses. Proc. Natl. Acad. Sci. USA. 2009;106:21407–21412. doi: 10.1073/pnas.0906361106. PubMed DOI PMC

Froy O., Chapnik N. Circadian oscillation of innate immunity components in mouse small intestine. Mol. Immunol. 2007;44:1954–1960. doi: 10.1016/j.molimm.2006.09.026. PubMed DOI

Druzd D., Matveeva O., Ince L., Harrison U., He W., Schmal C., Herzel H., Tsang A.H., Kawakami N., Leliavski A., et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity. 2017;46:120–132. doi: 10.1016/j.immuni.2016.12.011. PubMed DOI PMC

Ehlers A., Xie W., Agapov E., Brown S., Steinberg D., Tidwell R., Sajol G., Schutz R., Weaver R., Yu H., et al. Bmal1 links the circadian clock to viral airway pathology and asthma phenotypes. Mucosal. Immunol. 2018;11:97–111. doi: 10.1038/mi.2017.24. PubMed DOI PMC

Majumdar T., Dhar J., Patel S., Kondratov R., Barik S. Circadian transcription factor bmal1 regulates innate immunity against select RNA viruses. Innate Immun. 2017;23:147–154. doi: 10.1177/1753425916681075. PubMed DOI

Phillips A.C., Gallagher S., Carroll D., Drayson M. Preliminary evidence that morning vaccination is associated with an enhanced antibody response in men. Psychophysiology. 2008;45:663–666. doi: 10.1111/j.1469-8986.2008.00662.x. PubMed DOI

Long J.E., Drayson M.T., Taylor A.E., Toellner K.M., Lord J.M., Phillips A.C. Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial. Vaccine. 2016;34:2679–2685. doi: 10.1016/j.vaccine.2016.04.032. PubMed DOI PMC

Kirby T. Influenza vaccination in the morning improves response. Lancet. Respir. Med. 2016;4:435. doi: 10.1016/S2213-2600(16)30100-X. PubMed DOI

Dowell S.F. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg. Infect. Dis. 2001;7:369–374. doi: 10.3201/eid0703.017301. PubMed DOI PMC

Dopico X.C., Evangelou M., Ferreira R.C., Guo H., Pekalski M.L., Smyth D.J., Cooper N., Burren O.S., Fulford A.J., Hennig B.J., et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 2015;6:7000. doi: 10.1038/ncomms8000. PubMed DOI PMC

Edgar R.S., Stangherlin A., Nagy A.D., Nicoll M.P., Efstathiou S., O’Neill J.S., Reddy A.B. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc. Natl. Acad. Sci. USA. 2016;113:10085–10090. doi: 10.1073/pnas.1601895113. PubMed DOI PMC

Matsuzawa T., Nakamura Y., Ogawa Y., Ishimaru K., Goshima F., Shimada S., Nakao A., Kawamura T. Differential day-night outcome to HSV-2 cutaneous infection. J. Invest. Dermatol. 2018;138:233–236. doi: 10.1016/j.jid.2017.07.838. PubMed DOI

Zhao L., Liu M., Ouyang J., Zhu Z., Geng W., Dong J., Xiong Y., Wang S., Zhang X., Qiao Y., et al. The Per-1 Short Isoform Inhibits de novo HIV-1 Transcription in Resting Cd4+ T-cells. Curr. HIV Res. 2018;16:384–395. doi: 10.2174/1570162X17666190218145048. PubMed DOI PMC

Gatfield D., Le Martelot G., Vejnar C.E., Gerlach D., Schaad O., Fleury-Olela F., Ruskeepaa A.L., Oresic M., Esau C.C., Zdobnov E.M., et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 2009;23:1313–1326. doi: 10.1101/gad.1781009. PubMed DOI PMC

Luna J.M., Scheel T.K., Danino T., Shaw K.S., Mele A., Fak J.J., Nishiuchi E., Takacs C.N., Catanese M.T., de Jong Y.P., et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell. 2015;160:1099–1110. doi: 10.1016/j.cell.2015.02.025. PubMed DOI PMC

Bonilla E., Valero-Fuenmayor N., Pons H., Chacin-Bonilla L. Melatonin protects mice infected with venezuelan equine encephalomyelitis virus. Cell Mol. Life Sci. 1997;53:430–434. doi: 10.1007/s000180050051. PubMed DOI PMC

Gitto E., Karbownik M., Reiter R.J., Tan D.X., Cuzzocrea S., Chiurazzi P., Cordaro S., Corona G., Trimarchi G., Barberi I. Effects of melatonin treatment in septic newborns. Pediatr. Res. 2001;50:756–760. doi: 10.1203/00006450-200112000-00021. PubMed DOI

Tan D.X., Korkmaz A., Reiter R.J., Manchester L.C. Ebola virus disease: Potential use of melatonin as a treatment. J. Pineal. Res. 2014;57:381–384. doi: 10.1111/jpi.12186. PubMed DOI

Kawaguchi Y., Tanaka M., Yokoymama A., Matsuda G., Kato K., Kagawa H., Hirai K., Roizman B. Herpes simplex virus 1 alpha regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1. Proc. Natl. Acad. Sci. USA. 2001;98:1877–1882. doi: 10.1073/pnas.041592598. PubMed DOI PMC

Kalamvoki M., Roizman B. The Histone Acetyltransferase CLOCK is an Essential Component of the Herpes Simplex Virus 1 Transcriptome That Includes TFIID, ICP4, ICP27, and ICP22. J. Virol. 2011;85:9472–9477. doi: 10.1128/JVI.00876-11. PubMed DOI PMC

Huitron-Resendiz S., Marcondes M.C., Flynn C.T., Lanigan C.M., Fox H.S. Effects of simian immunodeficiency virus on the circadian rhythms of body temperature and gross locomotor activity. Proc. Natl. Acad. Sci. USA. 2007;104:15138–15143. doi: 10.1073/pnas.0707171104. PubMed DOI PMC

Yang S.L., Yu C., Jiang J.X., Liu L.P., Fang X., Wu C. Hepatitis B virus X protein disrupts the balance of the expression of circadian rhythm genes in hepatocellular carcinoma. Oncol. Lett. 2014;8:2715–2720. doi: 10.3892/ol.2014.2570. PubMed DOI PMC

Sengupta S., Tang S.Y., Devine J.C., Anderson S.T., Nayak S., Zhang S.L., Valenzuela A., Fisher D.G., Grant G.R., Lopez C.B., et al. Circadian control of lung inflammation in influenza infection. Nat. Commun. 2019;10:4107. doi: 10.1038/s41467-019-11400-9. PubMed DOI PMC

Zhang Z., Hunter L., Wu G., Maidstone R., Mizoro Y., Vonslow R., Fife M., Hopwood T., Begley N., Saer B., et al. Genome-wide effect of pulmonary airway epithelial cell-specific bmal1 deletion. FASEB J. 2019;33:6226–6238. doi: 10.1096/fj.201801682R. PubMed DOI PMC

Sundar I.K., Ahmad T., Yao H., Hwang J.W., Gerloff J., Lawrence B.P., Sellix M.T., Rahman I. Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD. Sci. Rep. 2015;4:9927. doi: 10.1038/srep09927. PubMed DOI PMC

Sahar S., Sassone-Corsi P. The epigenetic language of circadian clocks. Handb. Exp. Pharmacol. 2013:29–44. PubMed

Jueliger S., Lyons J., Cannito S., Pata I., Pata P., Shkolnaya M., Lo Re O., Peyrou M., Villarroya F., Pazienza V., et al. Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics. 2016;11:709–720. doi: 10.1080/15592294.2016.1214781. PubMed DOI PMC

Benegiamo G., Vinciguerra M., Mazzoccoli G., Piepoli A., Andriulli A., Pazienza V. DNA methyltransferases 1 and 3b expression in huh-7 cells expressing HCV core protein of different genotypes. Dig. Dis. Sci. 2012;57:1598–1603. doi: 10.1007/s10620-012-2160-1. PubMed DOI

Ripoli M., Barbano R., Balsamo T., Piccoli C., Brunetti V., Coco M., Mazzoccoli G., Vinciguerra M., Pazienza V. Hypermethylated levels of e-cadherin promoter in huh-7 cells expressing the HCV core protein. Virus Res. 2011;160:74–81. doi: 10.1016/j.virusres.2011.05.014. PubMed DOI

El-Serag H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264.e1–1273.e1.. doi: 10.1053/j.gastro.2011.12.061. PubMed DOI PMC

Ripoli M., Pazienza V. Impact of HCV genetic differences on pathobiology of disease. Expert Rev. Anti-Infect. Ther. 2011;9:747–759. doi: 10.1586/eri.11.94. PubMed DOI

Benegiamo G., Mazzoccoli G., Cappello F., Rappa F., Scibetta N., Oben J., Greco A., Williams R., Andriulli A., Vinciguerra M., et al. Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes. PLoS ONE. 2013;8:e60527. PubMed PMC

Pazienza V., Vinciguerra M., Andriulli A., Mangia A. Hepatitis C virus core protein genotype 3a increases SOCS-7 expression through PPAR-{gamma} in Huh-7 cells. J. Gen. Virol. 2010;91:1678–1686. doi: 10.1099/vir.0.020644-0. PubMed DOI

Chen J., Zhao J., Ma R., Lin H., Liang X., Cai X. Prognostic Significance of E-Cadherin Expression in Hepatocellular Carcinoma: A Meta-Analysis. PLoS ONE. 2014;9:e103952. doi: 10.1371/journal.pone.0103952. PubMed DOI PMC

Jiang L., Gu Y., Ye J., Liu F., Zhao Y., Wang C., Xu Y., Cao X., Zhang L., Dong W., et al. Resveratrol prevents hepatic steatosis induced by hepatitis C virus core protein. Biotechnol. Lett. 2012;34:2205–2212. doi: 10.1007/s10529-012-1034-0. PubMed DOI

Sun L.J., Li S.C., Zhao Y.H., Yu J.W., Kang P., Yan B.Z. Silent information regulator 1 inhibition induces lipid metabolism disorders of hepatocytes and enhances hepatitis C virus replication. Hepatol. Res. 2013;43:1343–1351. doi: 10.1111/hepr.12089. PubMed DOI

Feng S., Li M., Zhang J., Liu S., Wang Q., Quan M., Zhang M., Cheng J. Regulation of hepG2 cell apoptosis by hepatitis C virus (HCV) core protein via the sirt1-p53-bax pathway. Virus Genes. 2015;51:338–346. doi: 10.1007/s11262-015-1253-2. PubMed DOI

Zhou Y., Li G.Y., Ren J.P., Wang L., Zhao J., Ning S.B., Zhang Y., Lian J.Q., Huang C.X., Jia Z.S., et al. Protection of cd4+ t cells from hepatitis C virus infection-associated senescence via deltanp63-mir-181a-sirt1 pathway. J. Leukoc. Biol. 2016;100:1201–1211. doi: 10.1189/jlb.5A0316-119RR. PubMed DOI PMC

Sun L.J., Yu J.W., Shi Y.G., Zhang X.Y., Shu M.N., Chen M.Y. Hepatitis C virus core protein induces dysfunction of liver sinusoidal endothelial cell by down-regulation of silent information regulator 1. J. Med. Virol. 2018;90:926–935. doi: 10.1002/jmv.25034. PubMed DOI

Bellet M.M., Masri S., Astarita G., Sassone-Corsi P., Della Fazia M.A., Servillo G. Histone deacetylase sirt1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in mice. J. Biol. Chem. 2016;291:23318–23329. doi: 10.1074/jbc.M116.737114. PubMed DOI PMC

Sato S., Solanas G., Peixoto F.O., Bee L., Symeonidi A., Schmidt M.S., Brenner C., Masri S., Benitah S.A., Sassone-Corsi P. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging. Cell. 2017;170:664e11–677e11. doi: 10.1016/j.cell.2017.07.042. PubMed DOI PMC

Zhuang X., Magri A., Hill M., Lai A.G., Kumar A., Rambhatla S.B., Donald C.L., Lopez-Clavijo A.F., Rudge S., Pinnick K., et al. The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nat. Commun. 2019;10:377. doi: 10.1038/s41467-019-08299-7. PubMed DOI PMC

Zhuang X., Rambhatla S.B., Lai A.G., McKeating J.A. Interplay between circadian clock and viral infection. J. Mol. Med. (Berl) 2017;95:1283–1289. doi: 10.1007/s00109-017-1592-7. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development

. 2025 Jan 16 ; 23 (1) : 30. [epub] 20250116

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...