Senescence-like phenotype in post-mitotic cells of mice entering middle age
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32634782
PubMed Central
PMC7425512
DOI
10.18632/aging.103637
PII: 103637
Knihovny.cz E-zdroje
- Klíčová slova
- markers, mice, senescence,
- MeSH
- beta-galaktosidasa metabolismus MeSH
- biologické markery metabolismus MeSH
- imunohistochemie MeSH
- koncentrace vodíkových iontů MeSH
- mitóza fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- stárnutí buněk fyziologie MeSH
- stárnutí fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-galaktosidasa MeSH
- biologické markery MeSH
Staining mice tissues for β-galactosidase activity is a fundamental tool to detect age- or disease-associated cellular senescence. However, reported analyses of positivity for senescence-associated β-galactosidase activity or for other markers of senescence in post-mitotic cells of healthy murine tissues have been fragmentary or inconclusive. Here, we attempted to independently deepen this knowledge using multiple senescence markers within the same cells of wild type mice entering middle age (9 months of age). A histochemistry protocol for the pH-dependent detection of β-galactosidase activity in several tissues was used. At pH 6, routinely utilized to detect senescence-associated β-galactosidase activity, only specific cellular populations in the mouse body (including Purkinje cells and choroid plexus in the central nervous system) were detected as strongly positive for β-galactosidase activity. These post-mitotic cells were also positive for other established markers of senescence (p16, p21 and DPP4), detected by immunofluorescence, confirming a potential senescent phenotype. These data might contribute to understanding the functional relation between the senescence-associated β-galactosidase activity and senescence markers in post-mitotic cells in absence of disease or advanced aging.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St and x2019; Anne University Hospital Brno Czech Republic
Zobrazit více v PubMed
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, et al.. Cellular senescence: defining a path forward. Cell. 2019; 179:813–27. 10.1016/j.cell.2019.10.005 PubMed DOI
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25:585–621. 10.1016/0014-4827(61)90192-6 PubMed DOI
von Zglinicki T, Wan T, Miwa S. Senescence in post-mitotic cells: a driver of aging? Antioxid Redox Signal. 2020. [Epub ahead of print]. 10.1089/ars.2020.8048 PubMed DOI PMC
Sapieha P, Mallette FA. Cellular senescence in postmitotic cells: beyond growth arrest. Trends Cell Biol. 2018; 28:595–607. 10.1016/j.tcb.2018.03.003 PubMed DOI
Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Discovery, development, and future application of senolytics: theories and predictions. FEBS J. 2020; 287:2418–27. 10.1111/febs.15264 PubMed DOI PMC
Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, Curiel TJ, de Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, et al.. Interventions to slow aging in humans: are we ready? Aging Cell. 2015; 14:497–510. 10.1111/acel.12338 PubMed DOI PMC
Calimport SR, Bentley BL, Stewart CE, Pawelec G, Scuteri A, Vinciguerra M, Slack C, Chen D, Harries LW, Marchant G, Fleming GA, Conboy M, Antebi A, et al.. To help aging populations, classify organismal senescence. Science. 2019; 366:576–78. 10.1126/science.aay7319 PubMed DOI PMC
Rouwenhorst RJ, Pronk JT, van Dijken JP. The discovery of beta-galactosidase. Trends Biochem Sci. 1989; 14:416–18. 10.1016/0968-0004(89)90292-2 PubMed DOI
Merkwitz C, Blaschuk O, Schulz A, Ricken AM. Comments on methods to suppress endogenous β-galactosidase activity in mouse tissues expressing the LacZ reporter gene. J Histochem Cytochem. 2016; 64:579–86. 10.1369/0022155416665337 PubMed DOI PMC
Inada A, Nienaber C, Bonner-Weir S. Endogenous beta-galactosidase expression in murine pancreatic islets. Diabetologia. 2006; 49:1120–22. 10.1007/s00125-006-0186-7 PubMed DOI
Aird KM, Zhang R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol. 2013; 965:185–96. 10.1007/978-1-62703-239-1_12 PubMed DOI PMC
Lo Re O, Vinciguerra M. Histone MacroH2A1: a chromatin point of intersection between fasting, senescence and cellular regeneration. Genes (Basel). 2017; 8:367. 10.3390/genes8120367 PubMed DOI PMC
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995; 92:9363–67. 10.1073/pnas.92.20.9363 PubMed DOI PMC
Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006; 5:187–95. 10.1111/j.1474-9726.2006.00199.x PubMed DOI
Cristofalo VJ. SA beta gal staining: biomarker or delusion. Exp Gerontol. 2005; 40:836–38. 10.1016/j.exger.2005.08.005 PubMed DOI
Yegorov YE, Akimov SS, Hass R, Zelenin AV, Prudovsky IA. Endogenous beta-galactosidase activity in continuously nonproliferating cells. Exp Cell Res. 1998; 243:207–11. 10.1006/excr.1998.4169 PubMed DOI
Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res. 2000; 257:162–71. 10.1006/excr.2000.4875 PubMed DOI
Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol. 2007; 371:21–31. 10.1007/978-1-59745-361-5_3 PubMed DOI
Kovacovicova K, Vinciguerra M. Isolation of senescent cells by iodixanol (OptiPrep) density gradient-based separation. Cell Prolif. 2019; 52:e12674. 10.1111/cpr.12674 PubMed DOI PMC
Ogrodnik M, Zhu Y, Langhi LG, Tchkonia T, Krüger P, Fielder E, Victorelli S, Ruswhandi RA, Giorgadze N, Pirtskhalava T, Podgorni O, Enikolopov G, Johnson KO, et al.. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 2019; 29:1061–77.e8. 10.1016/j.cmet.2018.12.008 PubMed DOI PMC
Kovacovicova K, Skolnaja M, Heinmaa M, Mistrik M, Pata P, Pata I, Bartek J, Vinciguerra M. Senolytic cocktail Dasatinib+Quercetin (D+Q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer. Front Oncol. 2018; 8:459. 10.3389/fonc.2018.00459 PubMed DOI PMC
Matjusaitis M, Chin G, Sarnoski EA, Stolzing A. Biomarkers to identify and isolate senescent cells. Ageing Res Rev. 2016; 29:1–12. 10.1016/j.arr.2016.05.003 PubMed DOI
Kim KM, Noh JH, Bodogai M, Martindale JL, Yang X, Indig FE, Basu SK, Ohnuma K, Morimoto C, Johnson PF, Biragyn A, Abdelmohsen K, Gorospe M. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017; 31:1529–34. 10.1101/gad.302570.117 PubMed DOI PMC
Idda ML, McClusky WG, Lodde V, Munk R, Abdelmohsen K, Rossi M, Gorospe M. Survey of senescent cell markers with age in human tissues. Aging (Albany NY). 2020; 12:4052–66. 10.18632/aging.102903 PubMed DOI PMC
Chicas A, Kapoor A, Wang X, Aksoy O, Evertts AG, Zhang MQ, Garcia BA, Bernstein E, Lowe SW. H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence. Proc Natl Acad Sci USA. 2012; 109:8971–76. 10.1073/pnas.1119836109 PubMed DOI PMC
Klochendler A, Caspi I, Corem N, Moran M, Friedlich O, Elgavish S, Nevo Y, Helman A, Glaser B, Eden A, Itzkovitz S, Dor Y. The genetic program of pancreatic β-cell replication in vivo. Diabetes. 2016; 65:2081–93. 10.2337/db16-0003 PubMed DOI PMC
Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 2009; 8:311–23. 10.1111/j.1474-9726.2009.00481.x PubMed DOI
Wang C, Maddick M, Miwa S, Jurk D, Czapiewski R, Saretzki G, Langie SA, Godschalk RW, Cameron K, von Zglinicki T. Adult-onset, short-term dietary restriction reduces cell senescence in mice. Aging (Albany NY). 2010; 2:555–66. 10.18632/aging.100196 PubMed DOI PMC
Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, et al.. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014; 2:4172. 10.1038/ncomms5172 PubMed DOI PMC
Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell. 2013; 154:274–84. 10.1016/j.cell.2013.07.004 PubMed DOI
Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos ES, Thrasivoulou C, Saffrey MJ, Cameron K, von Zglinicki T. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. 2012; 11:996–1004. 10.1111/j.1474-9726.2012.00870.x PubMed DOI PMC
Flurkey K CJ, Harrison DE. The Mouse in Aging Research. Burlington, MA: American College Laboratory Animal Medicine (Elsevier); 2007. 10.1016/B978-012369454-6/50074-1 DOI
Devlin LA, Ramsbottom SA, Overman LM, Lisgo SN, Clowry G, Molinari E, Powell L, Miles CG, Sayer JA. Embryonic and foetal expression patterns of the ciliopathy gene CEP164. PLoS One. 2020; 15:e0221914. 10.1371/journal.pone.0221914 PubMed DOI PMC
Bolon B. Whole mount enzyme histochemistry as a rapid screen at necropsy for expression of beta-galactosidase (LacZ)-bearing transgenes: considerations for separating specific LacZ activity from nonspecific (endogenous) galactosidase activity. Toxicol Pathol. 2008; 36:265–76. 10.1177/0192623307312693 PubMed DOI
Serot JM, Béné MC, Faure GC. Choroid plexus, aging of the brain, and Alzheimer’s disease. Front Biosci. 2003; 8:s515–21. 10.2741/1085 PubMed DOI
Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018; 17:e12840. 10.1111/acel.12840 PubMed DOI PMC
Oubaha M, Miloudi K, Dejda A, Guber V, Mawambo G, Germain MA, Bourdel G, Popovic N, Rezende FA, Kaufman RJ, Mallette FA, Sapieha P. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci Transl Med. 2016; 8:362ra144. 10.1126/scitranslmed.aaf9440 PubMed DOI
Watanabe G, Pena P, Shambaugh GE 3rd, Haines GK 3rd, Pestell RG. Regulation of cyclin dependent kinase inhibitor proteins during neonatal cerebella development. Brain Res Dev Brain Res. 1998; 108:77–87. 10.1016/s0165-3806(98)00032-7 PubMed DOI
Barral S, Beltramo R, Salio C, Aimar P, Lossi L, Merighi A. Phosphorylation of histone H2AX in the mouse brain from development to senescence. Int J Mol Sci. 2014; 15:1554–73. 10.3390/ijms15011554 PubMed DOI PMC
Park S, Kim GW, Kwon SH, Lee JS. Broad domains of histone H3 lysine 4 trimethylation in transcriptional regulation and disease. FEBS J. 2020. [Epub ahead of print]. 10.1111/febs.15219 PubMed DOI
Angelopoulou E, Piperi C. DPP-4 inhibitors: a promising therapeutic approach against Alzheimer’s disease. Ann Transl Med. 2018; 6:255. 10.21037/atm.2018.04.41 PubMed DOI PMC
Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest. 2018; 128:1208–16. 10.1172/JCI95145 PubMed DOI PMC
Leontieva OV, Demidenko ZN, Blagosklonny MV. Contact inhibition and high cell density deactivate the mammalian target of rapamycin pathway, thus suppressing the senescence program. Proc Natl Acad Sci USA. 2014; 111:8832–37. 10.1073/pnas.1405723111 PubMed DOI PMC
Blagosklonny MV. Rapamycin, proliferation and geroconversion to senescence. Cell Cycle. 2018; 17:2655–65. 10.1080/15384101.2018.1554781 PubMed DOI PMC
Bolasco G, Calogero R, Carrara M, Banchaabouchi MA, Bilbao D, Mazzoccoli G, Vinciguerra M. Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice. Aging (Albany NY). 2012; 4:402–16. 10.18632/aging.100464 PubMed DOI PMC
Pazienza V, Panebianco C, Rappa F, Memoli D, Borghesan M, Cannito S, Oji A, Mazza G, Tamburrino D, Fusai G, Barone R, Bolasco G, Villarroya F, et al.. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin. 2016; 9:45. 10.1186/s13072-016-0098-9 PubMed DOI PMC
Lo Re O, Fusilli C, Rappa F, Van Haele M, Douet J, Pindjakova J, Rocha SW, Pata I, Valčíková B, Uldrijan S, Yeung RS, Peixoto CA, Roskams T, et al.. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2018; 67:636–50. 10.1002/hep.29519 PubMed DOI
Lo Re O, Mazza T, Giallongo S, Sanna P, Rappa F, Vinh Luong T, Li Volti G, Drovakova A, Roskams T, Van Haele M, Tsochatzis E, Vinciguerra M. Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+/CD25+/FoxP3+ regulatory T cells activation. Theranostics. 2020; 10:910–24. 10.7150/thno.35045 PubMed DOI PMC