Injection-based hairy root induction and plant regeneration techniques in Brassicaceae
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC20004
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
38368430
PubMed Central
PMC10874044
DOI
10.1186/s13007-024-01150-1
PII: 10.1186/s13007-024-01150-1
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, Asperuginoides axillaris, Brassicaceae, Cardamine hirsuta, Crucifers, Cytogenetics, Hairy root, Plant regeneration, Transformation,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Hairy roots constitute a valuable tissue culture system for species that are difficult to propagate through conventional seed-based methods. Moreover, the generation of transgenic plants derived from hairy roots can be facilitated by employing carefully designed hormone-containing media. RESULTS: We initiated hairy root formation in the rare crucifer species Asperuginoides axillaris via an injection-based protocol using the Agrobacterium strain C58C1 harboring a hairy root-inducing (Ri) plasmid and successfully regenerated plants from established hairy root lines. Our study confirms the genetic stability of both hairy roots and their derived regenerants and highlights their utility as a permanent source of mitotic chromosomes for cytogenetic investigations. Additionally, we have developed an effective embryo rescue protocol to circumvent seed dormancy issues in A. axillaris seeds. By using inflorescence primary stems of Arabidopsis thaliana and Cardamine hirsuta as starting material, we also established hairy root lines that were subsequently used for regeneration studies. CONCLUSION: We developed efficient hairy root transformation and regeneration protocols for various crucifers, namely A. axillaris, A. thaliana, and C. hirsuta. Hairy roots and derived regenerants can serve as a continuous source of plant material for molecular and cytogenetic analyses.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Snowdon RJ. Cytogenetics and genome analysis in Brassica crops. Chromosom Res. 2007;15:85–95. doi: 10.1007/s10577-006-1105-y. PubMed DOI
Woodward AW, Bartel B. Biology in bloom: a primer on the Arabidopsis thaliana model system. Genetics. 2018;208:1337–1349. doi: 10.1534/genetics.118.300755. PubMed DOI PMC
Carra A, Catalano C, Badalamenti O, Carimi F, Pasta S, Motisi A, et al. Overcoming sexual sterility in conservation of endangered species: the prominent role of biotechnology in the multiplication of Zelkova sicula (Ulmaceae), a relict tree at the brink of extinction. Plant Cell Tissue Organ Cult. 2019;137:139–148. doi: 10.1007/s11240-019-01558-x. DOI
Regalado JJ, Carmona-Martin E, López-Granero M, Jiménez-Araujo A, Castro P, Encina CL. Micropropagation of Asparagus macrorrhizus, a Spanish endemic species in extreme extinction risk. Plant Cell Tissue Organ Cult. 2018;132:573–578. doi: 10.1007/s11240-017-1346-9. DOI
José MCS, Martínez MT, Cernadas MJ, Montenegro R, Mosteiro F, Corredoira E. Biotechnological efforts for the propagation of Quercus lusitanica Lam, an endangered species. Trees. 2017;31:1571–81. doi: 10.1007/s00468-017-1570-2. DOI
Christey MC. Use of ri-mediated transformation for production of transgenic plants. Vitr Cell Dev Biol - Plant. 2001;37:687–700. doi: 10.1007/s11627-001-0120-0. DOI
Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone I, Costantino P. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet MGG. 1987;209:475–480. doi: 10.1007/BF00331152. PubMed DOI
White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol. 1985;164:33–44. doi: 10.1128/jb.164.1.33-44.1985. PubMed DOI PMC
Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey K-M, Ritala A, et al. Hairy root cultures—a versatile tool with multiple applications. Front Plant Sci. 2020;11:33. doi: 10.3389/fpls.2020.00033. PubMed DOI PMC
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: genome editing in plants using hairy root transformation. Plants. 2021;11:51. doi: 10.3390/plants11010051. PubMed DOI PMC
Morey KJ, Peebles CAM. Hairy roots: an untapped potential for production of plant products. Front Plant Sci. 2022;13:937095. doi: 10.3389/fpls.2022.937095. PubMed DOI PMC
Jedličková V, Mácová K, Štefková M, Butula J, Staveníková J, Sedláček M, et al. Hairy root transformation system as a tool for CRISPR/Cas9-directed genome editing in oilseed rape (Brassica napus) Front Plant Sci. 2022;13:919290. doi: 10.3389/fpls.2022.919290. PubMed DOI PMC
Bani B, Adiguzel N. A new genus record for Turkey: Asperuginoides Rauschert. Int J Bot. 2006;2:440–442. doi: 10.3923/ijb.2006.440.442. DOI
Finch-Savage WE, Cadman CSC, Toorop PE, Lynn JR, Hilhorst HWM. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J. 2007;51:60–78. doi: 10.1111/j.1365-313X.2007.03118.x. PubMed DOI
Peláez P, Hernández-López A, Estrada-Navarrete G, Sanchez F. Small RNAs derived from the T-DNA of Agrobacterium rhizogenes in hairy roots of Phaseolus vulgaris. Front Plant Sci. 2017;8:96. doi: 10.3389/fpls.2017.00096. PubMed DOI PMC
Meng D, Yang Q, Dong B, Song Z, Niu L, Wang L, et al. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnol J. 2019;17:1804–1813. doi: 10.1111/pbi.13101. PubMed DOI PMC
Montazeri M, Pakdin-Parizi A, Najafi-Zarrini H, Azadbakht M, Nematzadeh G, Gholami Z. A Comparative analysis of the hairy root induction methods in Hypericum perforatum. J Plant Mol Breed. 2019;7:67–76.
Zhang X, Li S, Li X, Song M, Ma S, Tian Y, et al. Peat-based hairy root transformation using Rhizobium rhizogenes as a rapid and efficient tool for easily exploring potential genes related to root-knot nematode parasitism and host response. Plant Methods. 2023;19:22. doi: 10.1186/s13007-023-01003-3. PubMed DOI PMC
Karimi M, Montagu MV, Gheysen G. Hairy root production in Arabidopsis thaliana: cotransformation with a promoter-trap vector results in complex T-DNA integration patterns. Plant Cell Rep. 1999;19:133–142. doi: 10.1007/s002990050723. PubMed DOI
Mai NTP, Boitel-Conti M, Guerineau F. Arabidopsis thaliana hairy roots for the production of heterologous proteins. Plant Cell Tissue Organ Cult. 2016;127:489–496. doi: 10.1007/s11240-016-1073-7. DOI
Guerineau F, Mai NTP, Boitel-Conti M. Arabidopsis hairy roots producing high level of active human gastric lipase. Mol Biotechnol. 2020;62:168–176. doi: 10.1007/s12033-019-00233-y. PubMed DOI
Paul P, Majumdar S, Jha S. A simple and efficient protocol for hairy root culture of Arabidopsis thaliana. Plant Cell Tissue Organ Cult. 2022;150:105–112. doi: 10.1007/s11240-022-02248-x. DOI
Pavingerová D, Ondřej M. Comparison of hairy root and crown gall tumors of Arabidopsis thaliana. Biol Plant. 1986;28:149–151. doi: 10.1007/BF02885217. DOI
German DA, Hendriks KP, Koch MA, Lens F, Lysak MA, Bailey CD, et al. An updated classification of the Brassicaceae (Cruciferae) PhytoKeys. 2023;220:127–144. doi: 10.3897/phytokeys.220.97724. PubMed DOI PMC
Christey MC, Sinclair BK. Regeneration of transgenic kale (Brassica oleracea var acephala) rape (B napus) and turnip (B. campestris var rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci. 1992;87:161–9. doi: 10.1016/0168-9452(92)90147-E. DOI
Christey MC, Sinclair BK, Braun RH, Wyke L. Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep. 1997;16:587–93. doi: 10.1007/BF01275497. PubMed DOI
Lambolez A, Kawamura A, Takahashi T, Rymen B, Iwase A, Favero DS, et al. Warm temperature promotes shoot regeneration in Arabidopsis thaliana. Plant Cell Physiol. 2022;63:618–634. doi: 10.1093/pcp/pcac017. PubMed DOI
Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, Chocholová E, et al. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8:e1002777. doi: 10.1371/journal.pgen.1002777. PubMed DOI PMC
Cheng Y, Wang X, Cao L, Ji J, Liu T, Duan K. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods. 2021;17:73. doi: 10.1186/s13007-021-00778-7. PubMed DOI PMC
Yang L-E, Peng D-L, Li Z-M, Huang L, Yang J, Sun H. Cold stratification, temperature, light, GA3, and KNO3 effects on seed germination of Primula beesiana from Yunnan. China Plant Divers. 2020;42:168–173. doi: 10.1016/j.pld.2020.01.003. PubMed DOI PMC
Thongtip A, Mosaleeyanon K, Korinsak S, Toojinda T, Darwell CT, Chutimanukul P, et al. Promotion of seed germination and early plant growth by KNO3 and light spectra in Ocimum tenuiflorum using a plant factory. Sci Rep. 2022;12:6995. doi: 10.1038/s41598-022-11001-5. PubMed DOI PMC
Rahman MH. Optimum age of siliques for rescue of hybrid embryos from crosses between Brassica oleracea, B rapa and B carinata. Can J Plant Sci. 2004;84:965–9. doi: 10.4141/P04-003. DOI
Sharma BB, Kalia P, Singh D, Sharma TR. Introgression of black rot resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue. Front Plant Sci. 2017;8:1255. doi: 10.3389/fpls.2017.01255. PubMed DOI PMC
Pen S, Nath UK, Song S, Goswami G, Lee J-H, Jung H-J, et al. Developmental stage and shape of embryo determine the efficacy of embryo rescue in introgressing orange/yellow color and anthocyanin genes of Brassica species. Plants. 2018;7:99. doi: 10.3390/plants7040099. PubMed DOI PMC
Aird ELH, Hamill JD, Rhodes MJC. Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult. 1988;15:47–57. doi: 10.1007/BF00039888. DOI
Veuskens J, Marie D, Brown SC, Jacobs M, Negrutiu I. Flow sorting of the Y sex chromosome in the dioecious plant Melandrium album. Cytometry. 1995;21:363–373. doi: 10.1002/cyto.990210408. PubMed DOI
Peniton EA, Waminal NE, Yang T-J, Kim HH. Cell cycle synchronization in Panax ginseng roots for cytogenomics research. Hortic, Environ, Biotechnol. 2022;63:137–145. doi: 10.1007/s13580-021-00383-6. DOI
Baíza AM, Quiroz-Moreno A, Ruíz JA, Loyola-Vargas VM. Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tissue Organ Cult. 1999;59:9. doi: 10.1023/A:1006398727508. DOI
Neumann P, Lysák M, Doležel J, Macas J. Isolation of chromosomes from Pisum sativum L hairy root cultures and their analysis by flow cytometry. Plant Sci. 1998;137:205–15. doi: 10.1016/S0168-9452(98)00141-1. DOI
Bunn E, Turner SR, Dixon KW. Biotechnology for saving rare and threatened flora in a biodiversity hotspot. Vitr Cell Dev Biol—Plant. 2011;47:188–200. doi: 10.1007/s11627-011-9340-0. DOI
Coelho N, Gonçalves S, Romano A. Endemic plant species conservation: biotechnological approaches. Plants. 2020;9:345. doi: 10.3390/plants9030345. PubMed DOI PMC
Hay AS, Pieper B, Cooke E, Mandáková T, Cartolano M, Tattersall AD, et al. Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J. 2014;78:1–15. doi: 10.1111/tpj.12447. PubMed DOI
Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, et al. Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genetics Mgg. 1983;190:204–214. doi: 10.1007/BF00330641. DOI
Attuluri VPS, López JFS, Maier L, Paruch K, Robert HS. Comparing the efficiency of six clearing methods in developing seeds of Arabidopsis thaliana. Plant Reprod. 2022;35:279–293. doi: 10.1007/s00497-022-00453-4. PubMed DOI PMC