Hairy root transformation system as a tool for CRISPR/Cas9-directed genome editing in oilseed rape (Brassica napus)

. 2022 ; 13 () : 919290. [epub] 20220804

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35991410

Our study examined the mutation efficiency of the CRISPR/Cas9 method for tryptophan aminotransferase BnaTAA1 genes involved in the auxin biosynthesis pathway. We made nine CRISPR/Cas9 constructs with various promoters driving the expression of a Cas9 from Staphylococcus aureus (SaCas9) or a plant-codon-optimized Streptococcus pyogenes Cas9 (pcoCas9). We developed a fast and efficient system for evaluating the variety and frequency of mutations caused by each construct using Brassica napus hairy roots. We showed that pcoCas9 is more efficient in mutating the targeted loci than SaCas9 and the presence of the NLS signal enhanced the chance of mutagenesis by 25%. The mutations were studied further in regenerated lines, and we determined the BnaTAA1 gene expression and heritability of the gene modifications in transgenic plants. Hairy root transformation combined with CRISPR/Cas9-mediated gene editing represents a fast and straightforward system for studying target gene function in the important oilseed crop B. napus.

Zobrazit více v PubMed

Agostini E., Talano M. A., González P. S., Oller A. L., Medina M. I. (2013). Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? PubMed DOI

Allen G. C., Flores-Vergara M. A., Krasynanski S., Kumar S., Thompson W. F. (2006). A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. PubMed DOI

Andersen C. L., Jensen J. L., Ørntoft T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. PubMed DOI

Bortesi L., Zhu C., Zischewski J., Perez L., Bassié L., Nadi R., et al. (2016). Patterns of CRISPR/Cas9 activity in plants, animals and microbes. PubMed DOI PMC

Brinkman E. K., Chen T., Amendola M., van Steensel B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. PubMed DOI PMC

Cardarelli M., Mariotti D., Pomponi M., Spanò L., Capone I., Costantino P. (1987). Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. PubMed DOI

Chao H., Li T., Luo C., Huang H., Ruan Y., Li X., et al. (2020). PubMed DOI PMC

Christey M. C. (2001). Use of Ri-mediated transformation for production of transgenic plants. DOI

Christey M. C., Sinclair B. K. (1992). Regeneration of transgenic kale ( DOI

Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., et al. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. PubMed DOI PMC

Ding Y., Li H., Chen L.-L., Xie K. (2016). Recent advances in genome editing using CRISPR/Cas9. PubMed DOI PMC

Doudna J. A., Charpentier E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. PubMed DOI

Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. PubMed DOI PMC

Engler C., Youles M., Gruetzner R., Ehnert T.-M., Werner S., Jones J. D. G., et al. (2014). A golden gate modular cloning toolbox for plants. PubMed DOI

Gelvin S. B. (1990). Crown gall disease and hairy root disease: a sledgehammer and a tackhammer. PubMed DOI PMC

Gelvin S. B. (2003). Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. PubMed DOI PMC

Georgiev M. I., Agostini E., Ludwig-Müller J., Xu J. (2012). Genetically transformed roots: from plant disease to biotechnological resource. PubMed DOI

Gocal G. F. W. (2021). Gene editing in DOI

Gouy M., Guindon S., Gascuel O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. PubMed DOI

Grützner R., Martin P., Horn C., Mortensen S., Cram E. J., Lee-Parsons C. W. T., et al. (2021). High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. PubMed DOI PMC

Gutierrez-Valdes N., Häkkinen S. T., Lemasson C., Guillet M., Oksman-Caldentey K. M., Ritala A., et al. (2020). Hairy root cultures-a versatile tool with multiple applications. PubMed DOI PMC

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. PubMed DOI PMC

Kaya H., Mikami M., Endo A., Endo M., Toki S. (2016). Highly specific targeted mutagenesis in plants using PubMed DOI PMC

Keller O., Kollmar M., Stanke M., Waack S. (2011). A novel hybrid gene prediction method employing protein multiple sequence alignments. PubMed DOI

Kirchner T. W., Niehaus M., Debener T., Schenk M. K., Herde M. (2017). Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of PubMed DOI PMC

Kiryushkin A. S., Ilina E. L., Guseva E. D., Pawlowski K., Demchenko K. N. (2022). Hairy CRISPR: genome editing in plants using hairy root transformation. PubMed DOI PMC

Lei Y., Lu L., Liu H.-Y., Li S., Xing F., Chen L.-L. (2014). CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. PubMed DOI

Li J.-F., Norville J. E., Aach J., McCormack M., Zhang D., Bush J., et al. (2013). Multiplex and homologous recombination–mediated genome editing in PubMed DOI PMC

Li X., Sandgrind S., Moss O., Guan R., Ivarson E., Wang E. S., et al. (2021). Efficient protoplast regeneration protocol and CRISPR/Cas9-mediated editing of glucosinolate transporter (GTR) genes in rapeseed ( PubMed DOI PMC

Lin C. S., Hsu C. T., Yang L. H., Lee L. Y., Fu J. Y., Cheng Q. W., et al. (2018). Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. PubMed DOI PMC

Liu H., Ding Y., Zhou Y., Jin W., Xie K., Chen L.-L. (2017). CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. PubMed DOI

Lomov N. A., Viushkov V. S., Petrenko A. P., Syrkina M. S., Rubtsov M. A. (2019). Methods of evaluating the efficiency of CRISPR/Cas genome editing. PubMed DOI

Lykke-Andersen S., Jensen T. H. (2015). Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. PubMed DOI

Mao Y., Zhang Z., Feng Z., Wei P., Zhang H., Botella J. R., et al. (2016). Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in PubMed DOI PMC

Petit A., David C., Dahl G. A., Ellis J. G., Guyon P., Casse-Delbart F., et al. (1983). Further extension of the opine concept: plasmids in DOI

Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. PubMed DOI PMC

Pfaffl M. W., Tichopad A., Prgomet C., Neuvians T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. PubMed DOI

Steinert J., Schiml S., Fauser F., Puchta H. (2015). Highly efficient heritable plant genome engineering using Cas9 orthologues from PubMed DOI

Stepanova A. N., Robertson-Hoyt J., Yun J., Benavente L. M., Xie D. Y., Dolezal K., et al. (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. PubMed DOI

Taylor C. G., Fuchs B., Collier R., Lutke W. K. (2006). Generation of composite plants using PubMed DOI

Tuladhar R., Yeu Y., Tyler Piazza J., Tan Z., Rene Clemenceau J., Wu X., et al. (2019). CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. PubMed DOI PMC

Vandesompele J., Preter K. D., Pattyn F., Poppe B., Roy N. V., Paepe A. D., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. PubMed DOI PMC

Wan H., Cui Y., Ding Y., Mei J., Dong H., Zhang W., et al. (2017). Time-series analyses of transcriptomes and proteomes reveal molecular networks underlying oil accumulation in canola. PubMed DOI PMC

Wang Q., Qin G., Cao M., Chen R., He Y., Yang L., et al. (2020). A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. PubMed DOI PMC

Wang Z. P., Xing H. L., Dong L., Zhang H. Y., Han C. Y., Wang X. C., et al. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in PubMed DOI PMC

Weber E., Engler C., Gruetzner R., Werner S. (2011). A modular cloning system for standardized assembly of multigene constructs. PubMed DOI PMC

Werner S., Engler C., Weber E., Gruetzner R., Marillonnet S. (2012). Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. PubMed DOI

White F. F., Taylor B. H., Huffman G. A., Gordon M. P., Nester E. W. (1985). Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of PubMed DOI PMC

Wolter F., Klemm J., Puchta H. (2018). Efficient in planta gene targeting in PubMed DOI

Yan L., Wei S., Wu Y., Hu R., Li H., Yang W., et al. (2015). High-efficiency genome editing in PubMed DOI

Zhang F., LeBlanc C., Irish V. F., Jacob Y. (2017). Rapid and efficient CRISPR/Cas9 gene editing in PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...