Comparing the efficiency of six clearing methods in developing seeds of Arabidopsis thaliana
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36378346
PubMed Central
PMC9705463
DOI
10.1007/s00497-022-00453-4
PII: 10.1007/s00497-022-00453-4
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis seed clearing, ClearSee alpha, FAST9, Fluorescence preservation, Iohexol, Microscopy imaging,
- MeSH
- Arabidopsis * metabolismus MeSH
- rostliny MeSH
- semena rostlinná metabolismus MeSH
- xylitol metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ClearSee MeSH Prohlížeč
- xylitol MeSH
ClearSee alpha and FAST9 were optimized for imaging Arabidopsis seeds up to the torpedo stages. The methods preserve the fluorescence of reporter proteins and seed shape, allowing phenotyping embryos in intact seeds. Tissue clearing methods eliminate the need for sectioning, thereby helping better understand the 3D organization of tissues and organs. In the past fifteen years, clearing methods have been developed to preserve endogenous fluorescent protein tags. Some of these methods (ClearSee, TDE, PEA-Clarity, etc.) were adapted to clear various plant species, with the focus on roots, leaves, shoot apical meristems, and floral parts. However, these methods have not been used in developing seeds beyond the early globular stage. Tissue clearing is problematic in post-globular seeds due to various apoplastic barriers and secondary metabolites. In this study, we compared six methods for their efficiency in clearing Arabidopsis thaliana seeds at post-globular embryonic stages. Three methods (TDE, ClearSee, and ClearSee alpha) have already been reported in plants, whereas the others (fsDISCO, FAST9, and CHAPS clear) are used in this context for the first time. These methods were assessed for seed morphological changes, clearing capacity, removal of tannins, and spectral properties. We tested each method in seeds from globular to mature stages. The pros and cons of each method are listed herein. ClearSee alpha appears to be the method of choice as it preserves seed morphology and prevents tannin oxidation. However, FAST9 with 60% iohexol as a mounting medium is faster, clears better, and appears suitable for embryonic shape imaging. Our results may guide plant researchers to choose a suitable method for imaging fluorescent protein-labeled embryos in intact Arabidopsis seeds.
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Becker K, Jährling N, Saghafi S, et al. Chemical clearing and dehydration of GFP expressing mouse brains. PLoS ONE. 2012;7:e33916. doi: 10.1371/journal.pone.0033916. PubMed DOI PMC
Benková E, Michniewicz M, Sauer M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602. doi: 10.1016/s0092-8674(03)00924-3. PubMed DOI
Debeaujon I, Nesi N, Perez P, et al. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell. 2003;15:2514–2531. doi: 10.1105/tpc.014043. PubMed DOI PMC
Doll NM, Ingram GC. Embryo-Endosperm interactions. Annu Rev Plant Biol. 2022;73:293–321. doi: 10.1146/annurev-arplant-102820-091838. PubMed DOI
Ertürk A, Becker K, Jährling N, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 2012;7:1983–1995. doi: 10.1038/nprot.2012.119. PubMed DOI
Figueiredo DD, Batista RA, Roszak PJ, et al. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife. 2016;5:e20542. doi: 10.7554/elife.20542. PubMed DOI PMC
Friml J, Vieten A, Sauer M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI
Haecker A, Groß-Hardt R, Geiges B, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development. 2004;131:657–668. doi: 10.1242/dev.00963. PubMed DOI
Hahn C, Becker K, Saghafi S, et al. High-resolution imaging of fluorescent whole mouse brains using stabilised organic media (sDISCO) J Biophotonics. 2019;12:e201800368. doi: 10.1002/jbio.201800368. PubMed DOI
Heisler MG, Ohno C, Das P, et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol. 2005;15:1899–1911. doi: 10.1016/j.cub.2005.09.052. PubMed DOI
Hériché M, Arnould C, Wipf D, Courty P-E. Imaging plant tissues: advances and promising clearing practices. Trends Plant Sci. 2022;27:601–615. doi: 10.1016/j.tplants.2021.12.006. PubMed DOI
Hoyer H. Beitrage zur histologischen technik. Biologisches Zentralblatt. 1882;2:17–24.
Imoto A, Yamada M, Sakamoto T, et al. A clearsee-based clearing protocol for 3D visualization of Arabidopsis thaliana embryos. Plants. 2021;10:190. doi: 10.3390/plants10020190. PubMed DOI PMC
Kurihara D, Mizuta Y, Sato Y, Higashiyama T. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development. 2015;142:4168–4179. doi: 10.1242/dev.127613. PubMed DOI PMC
Kurihara D, Mizuta Y, Nagahara S, Higashiyama T. ClearSeeAlpha: advanced optical clearing for whole-plant imaging. Plant Cell Physiol. 2021;62:1302–1310. doi: 10.1093/pcp/pcab033. PubMed DOI PMC
Marquès-Bueno MDM, Morao AK, Cayrel A, et al. A versatile multisite gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J. 2016;85:320–333. doi: 10.1111/tpj.13099. PubMed DOI PMC
Matilla AJ. Seed coat formation: its evolution and regulation. Seed Sci Res. 2019;29:215–226. doi: 10.1017/s0960258519000254. DOI
Musielak TJ, Slane D, Liebig C, Bayer M. A versatile optical clearing protocol for deep tissue imaging of fluorescent proteins in Arabidopsis thaliana. PLoS ONE. 2016;11:e0161107–e0161107. doi: 10.1371/journal.pone.0161107. PubMed DOI PMC
Palmer WM, Martin AP, Flynn JR, et al. PEA-CLARITY: 3D molecular imaging of whole plant organs. Sci Rep. 2015;5:13492. doi: 10.1038/srep13492. PubMed DOI PMC
Park Y-G, Sohn CH, Chen R, et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol. 2019;37:73–83. doi: 10.1038/nbt.4281. PubMed DOI PMC
Qi Y, Yu T, Xu J, et al. FDISCO: advanced solvent-based clearing method for imaging whole organs. Sci Adv. 2019;5:eaau8355. doi: 10.1126/sciadv.aau8355. PubMed DOI PMC
Robert HS, Grones P, Stepanova AN, et al. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol. 2013;23:2506–2512. doi: 10.1016/j.cub.2013.09.039. PubMed DOI
Sakamoto Y, Ishimoto A, Sakai Y, et al. Improved clearing method contributes to deep imaging of plant organs. Commun Biol. 2022;5:12. doi: 10.1038/s42003-021-02955-9. PubMed DOI PMC
Slane D, Bürgel P, Bayer M. Plant germline development, methods and protocols. Methods Mol Biology. 2017;1669:87–94. doi: 10.1007/978-1-4939-7286-9_8. PubMed DOI
Stepanova AN, Robertson-Hoyt J, Yun JJ, et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–191. doi: 10.1016/j.cell.2008.01.047. PubMed DOI
Tofanelli R, Vijayan A, Scholz S, Schneitz K. Protocol for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by confocal laser scanning microscopy. Plant Methods. 2019;15(1):1–13. doi: 10.1186/s13007-019-0505-x. PubMed DOI PMC
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. Planta. 2022;255:90. doi: 10.1007/s00425-022-03870-x. PubMed DOI PMC
Wabnik K, Robert HS, Smith RS, Friml J. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr Biol. 2013;23:2513–2518. doi: 10.1016/j.cub.2013.10.038. PubMed DOI
Warner CA, Biedrzycki ML, Jacobs SS, et al. An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol. 2014;166:1684–1687. doi: 10.1104/pp.114.244673. PubMed DOI PMC
Xuan L, Wang Z, Jiang L. Vanillin assay of Arabidopsis seeds for Proanthocyanidins. Bio-protocol. 2014;4:1309. doi: 10.21769/bioprotoc.1309. DOI
Zhao S, Todorov MI, Cai R, et al. Cellular and molecular probing of intact human organs. Cell. 2020;180:796–812.e19. doi: 10.1016/j.cell.2020.01.030. PubMed DOI PMC