Modulation of NMDA-Mediated Clock Resetting in the Suprachiasmatic Nuclei of mPer2 Luc Mouse by Endocannabinoids

. 2019 ; 10 () : 361. [epub] 20190329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30984034

Light entrains the master circadian clock in the suprachiasmatic nucleus (SCN) predominantly through glutamatergic signaling via NMDA receptors. The magnitude and the direction of resulting phase shifts depend on timing of the photic stimulus. Previous reports based on behavioral and electrophysiological data suggested that endocannabinoids (EC) might reduce the ability of the SCN clock to respond to light. However, there is little direct evidence for the involvement of EC in entrainment of the rhythmic clock gene expression in the SCN. We have used luminescence recording of cultured SCN slices from mPer2 Luc mice to construct a complete phase response curve (PRC) for NMDA receptor activation. The results demonstrated that NMDA administration phase-shifts the PER2 rhythm in a time-specific manner. A stable "singularity," in the course of which the clock seemingly stops while the overall phase is caught between delays and advances, can occur in response to NMDA at a narrow interval during the PER2 level decrease. NMDA-induced phase delays were affected neither by the agonist (WIN 55,212-2 mesylate) nor by the antagonist (rimonabant hydrochloride) of EC receptors. However, the agonist significantly reduced the NMDA-induced phase advance of the clock, while the antagonist enhanced the phase advance, causing a shift in the sensitivity window of the SCN to NMDA. The modulation of EC signaling in the SCN had no effect by itself on the phase of the PER2 rhythm. The results provide evidence for a modulatory role of EC in photic entrainment of the circadian clock in the SCN.

Zobrazit více v PubMed

Abraham U., Granada A. E., Westermark P. O., Heine M., Kramer A., Herzel H. (2010). Coupling governs entrainment range of circadian clocks. PubMed DOI PMC

Acuna-Goycolea C., Obrietan K., Van Den Pol A. N. (2010). Cannabinoids excite circadian clock neurons. PubMed DOI PMC

Albers H. E., Walton J. C., Gamble K. L., Mcneill J. K., Hummer D. L. (2017). The dynamics of GABA signaling: revelations from the circadian pacemaker in the suprachiasmatic nucleus. PubMed DOI PMC

An S., Harang R., Meeker K., Granados-Fuentes D., Tsai C. A., Mazuski C., et al. (2013). A neuropeptide speeds circadian entrainment by reducing intercellular synchrony. PubMed DOI PMC

Asai M., Yamaguchi S., Isejima H., Jonouchi M., Moriya T., Shibata S., et al. (2001). Visualization of mPer1 transcription in vitro. NMDA induces a rapid phase shift of mPer1 gene in cultured SCN. PubMed DOI

Bazwinsky-Wutschke I., Zipprich A., Dehghani F. (2017). Daytime-dependent changes of cannabinoid receptor type 1 and type 2 expression in rat liver. PubMed DOI PMC

Brancaccio M., Patton A. P., Chesham J. E., Maywood E. S., Hastings M. H. (2017). Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. PubMed DOI PMC

Challet E., Caldelas I., Graff C., Pevet P. (2003). Synchronization of the molecular clockwork by light- and food-related cues in mammals. PubMed DOI

Challet E., Denis I., Rochet V., Aioun J., Gourmelen S., Lacroix H., et al. (2013). The role of PPARbeta/delta in the regulation of glutamatergic signaling in the hamster suprachiasmatic nucleus. PubMed DOI PMC

Chen L., Yang G. (2014). PPARs integrate the mammalian clock and energy metabolism. PubMed DOI PMC

Choi H. J., Lee C. J., Schroeder A., Kim Y. S., Jung S. H., Kim J. S., et al. (2008). Excitatory actions of GABA in the suprachiasmatic nucleus. PubMed DOI PMC

Colwell C. S., Menaker M. (1992). NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. PubMed DOI

Daan S., Pittendrigh C. S. (1976). Functional-analysis of circadian pacemakers in nocturnal rodents.2. variability of phase response curves. DOI

DeWoskin D., Myung J., Belle M. D., Piggins H. D., Takumi T., Forger D. B. (2015). Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. PubMed DOI PMC

Ding J. M., Buchanan G. F., Tischkau S. A., Chen D., Kuriashkina L., Faiman L. E., et al. (1998). A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. PubMed DOI

Ding J. M., Chen D., Weber E. T., Faiman L. E., Rea M. A., Gillette M. U. (1994). Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. PubMed DOI

Field M. D., Maywood E. S., O′Brien J. A., Weaver D. R., Reppert S. M., Hastings M. (2000). Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanism. PubMed DOI

Gannon R. L., Rea M. A. (1994). In situ hybridization of antisense mRNA oligonucleotides for AMPA, NMDA and metabotropic glutamate receptor subtypes in the rat suprachiasmatic nucleus at different phases of the circadian cycle. PubMed DOI

Gau D., Lemberger T., Von Gall C., Kretz O., Le Minh N., Gass P., et al. (2002). Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. PubMed DOI

Hastings M. H., Brancaccio M., Maywood E. S. (2014). Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. PubMed DOI PMC

Honma S., Honma K. (1999). Light-induced uncoupling of multioscillatory circadian system in a diurnal rodent, asian chipmunk. PubMed DOI

Jewett M. E., Kronauer R. E., Czeisler C. A. (1991). Light-induced suppression of endogenous circadian amplitude in humans. PubMed DOI

Johnson C. H. (1992). “Phase response curves: What can they tell us about circadian clocks?,” in

Lee C. M., Neighbors C., Woods B. A. (2007). Marijuana motives: young adults’ reasons for using marijuana. PubMed DOI PMC

Liu C., Reppert S. M. (2000). GABA synchronizes clock cells within the suprachiasmatic circadian clock. PubMed DOI

Lu H. C., Mackie K. (2016). An introduction to the endogenous cannabinoid system. PubMed DOI PMC

Marichal-Cancino B. A., Fajardo-Valdez A., Ruiz-Contreras A. E., Mendez-Diaz M., Prospero-Garcia O. (2017). Advances in the physiology of gpr55 in the central nervous system. PubMed DOI PMC

McNeill J. K. T., Walton J. C., Albers H. E. (2018). Functional significance of the excitatory effects of gaba in the suprachiasmatic nucleus. PubMed DOI PMC

Meijer J. H., Schwartz W. J. (2003). In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. PubMed DOI

Mintz E. M., Marvel C. L., Gillespie C. F., Price K. M., Albers H. E. (1999). Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. PubMed DOI PMC

Mizoro Y., Yamaguchi Y., Kitazawa R., Yamada H., Matsuo M., Fustin J. M., et al. (2010). Activation of AMPA receptors in the suprachiasmatic nucleus phase-shifts the mouse circadian clock in vivo and in vitro. PubMed DOI PMC

Mohawk J. A., Takahashi J. S. (2011). Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. PubMed DOI PMC

Moore R. Y., Lenn N. J. (1972). A retinohypothalamic projection in the rat. PubMed DOI

Olde Engberink A. H. O., Meijer J. H., Michel S. (2018). Chloride cotransporter KCC2 is essential for GABAergic inhibition in the SCN. PubMed DOI

O’Sullivan S. E. (2016). An update on PPAR activation by cannabinoids. PubMed DOI PMC

Pembroke W. G., Babbs A., Davies K. E., Ponting C. P., Oliver P. L. (2015). Temporal transcriptomics suggest that twin-peaking genes reset the clock. PubMed DOI PMC

Pennartz C. M., Hamstra R., Geurtsen A. M. (2001). Enhanced NMDA receptor activity in retinal inputs to the rat suprachiasmatic nucleus during the subjective night. PubMed DOI PMC

Polidarova L., Olejnikova L., Pauslyova L., Sladek M., Sotak M., Pacha J., et al. (2014). Development and entrainment of the colonic circadian clock during ontogenesis. PubMed DOI

Pulivarthy S. R., Tanaka N., Welsh D. K., De Haro L., Verma I. M., Panda S. (2007). Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. PubMed DOI PMC

Ralph M. R., Foster R. G., Davis F. C., Menaker M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. PubMed DOI

Ryberg E., Larsson N., Sjogren S., Hjorth S., Hermansson N. O., Leonova J., et al. (2007). The orphan receptor GPR55 is a novel cannabinoid receptor. PubMed DOI PMC

Sanford A. E., Castillo E., Gannon R. L. (2008). Cannabinoids and hamster circadian activity rhythms. PubMed DOI

Shibata S., Watanabe A., Hamada T., Ono M., Watanabe S. (1994). N-methyl-D-aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. PubMed DOI

Soethoudt M., Grether U., Fingerle J., Grim T. W., Fezza F., De Petrocellis L., et al. (2017). Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. PubMed DOI PMC

Sun Y., Alexander S. P., Kendall D. A., Bennett A. J. (2006). Cannabinoids and PPARalpha signalling. PubMed DOI

Tahara Y., Aoyama S., Shibata S. (2017). The mammalian circadian clock and its entrainment by stress and exercise. PubMed DOI PMC

Ukai H., Kobayashi T. J., Nagano M., Masumoto K. H., Sujino M., Kondo T., et al. (2007). Melanopsin-dependent photo-perturbation reveals desynchronization underlying the singularity of mammalian circadian clocks. PubMed DOI

Van den Pol A. N. (1991). Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. PubMed DOI PMC

VanderLeest H. T., Rohling J. H., Michel S., Meijer J. H. (2009). Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization. PubMed DOI PMC

Wagner S., Castel M., Gainer H., Yarom Y. (1997). GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. PubMed DOI

Welsh D. K., Reppert S. M. (1996). Gap junctions couple astrocytes but not neurons in dissociated cultures of rat suprachiasmatic nucleus. PubMed DOI

Welsh D. K., Takahashi J. S., Kay S. A. (2010). Suprachiasmatic nucleus: cell autonomy and network properties. PubMed DOI PMC

Whitehurst L. N., Fogler K., Hall K., Hartmann M., Dyche J. (2015). The effects of chronic marijuana use on circadian entrainment. PubMed DOI

Winfree A. T. (1970). Integrated view of resetting a circadian clock. PubMed DOI

Wittmann G., Deli L., Kallo I., Hrabovszky E., Watanabe M., Liposits Z., et al. (2007). Distribution of type 1 cannabinoid receptor (CB1)-immunoreactive axons in the mouse hypothalamus. PubMed DOI

Yamazaki S., Takahashi J. S. (2005). Real-time luminescence reporting of circadian gene expression in mammals. PubMed DOI PMC

Yang X., Downes M., Yu R. T., Bookout A. L., He W., Straume M., et al. (2006). Nuclear receptor expression links the circadian clock to metabolism. PubMed DOI

Yoo S. H., Yamazaki S., Lowrey P. L., Shimomura K., Ko C. H., Buhr E. D., et al. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PubMed DOI PMC

Zhang R., Lahens N. F., Ballance H. I., Hughes M. E., Hogenesch J. B. (2014). A circadian gene expression atlas in mammals: implications for biology and medicine. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators

. 2023 Apr ; 43 (3) : 1319-1333. [epub] 20220711

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...