The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
514219
Grantová Agentura, Univerzita Karlova
PubMed
35821305
DOI
10.1007/s10571-022-01252-1
PII: 10.1007/s10571-022-01252-1
Knihovny.cz E-zdroje
- Klíčová slova
- Circadian clock, Microglia, PLX3397, Polarization, Suprachiasmatic nuclei, mPER2Luc mouse,
- MeSH
- cirkadiánní hodiny * genetika MeSH
- cirkadiánní rytmus fyziologie MeSH
- mikroglie MeSH
- mozek MeSH
- myši MeSH
- nucleus suprachiasmaticus metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The activity of the immune system is controlled by circadian clocks present in different immune cells. The brain-resident subtype of immune cells, microglia, exhibits a wide range of functional phenotypes depending on the signaling molecules in their microenvironment. The exact role of microglia in the hypothalamic suprachiasmatic nuclei (SCN), the central circadian clock, has not been known. Therefore, the aim of this study was to determine (1) whether microenvironment-induced changes in microglial polarization affect circadian clocks in these cells and (2) whether the presence of microglia contributes to SCN clock function. Microglial and SCN clocks were monitored using PER2-driven bioluminescence rhythms at the tissue and single-cell levels. We found that polarization of resting microglia to a pro-inflammatory (M1) or anti-inflammatory (M2) state significantly altered the period and amplitude of their molecular circadian clock; importantly, the parameters changed plastically with the repolarization of microglia. This effect was reflected in specific modulations of the expression profiles of individual clock genes in the polarized microglia. Depletion of microglia significantly reduced the amplitude of the SCN clock, and co-cultivation of the SCN explants with M2-polarized microglia specifically improved the amplitude of the SCN clock. These results demonstrate that the presence of M2-polarized microglia has beneficial effects on SCN clock function. Our results provide new insight into the mutual interaction between immune and circadian systems in the brain.
Zobrazit více v PubMed
Araki T, Ikegaya Y, Koyama R (2020) Microglia attenuate the kainic acid-induced death of hippocampal neurons in slice cultures. Neuropsychopharmacol Rep 40:85–91. https://doi.org/10.1002/npr2.12086 PubMed DOI
Barahona RA, Morabito S, Swarup V, Green KN (2022) Cortical diurnal rhythms remain intact with microglial depletion. Sci Rep 12:1–9. https://doi.org/10.1038/s41598-021-04079-w DOI
Bartness TJ, Song CK, Demas GE (2001) SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 16:196–204. https://doi.org/10.1177/074873040101600302 PubMed DOI
Biber K, Neumann H, Inoue K, Boddeke HWGM (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30:596–602. https://doi.org/10.1016/j.tins.2007.08.007 PubMed DOI
Blasko I, Stampfer-Kountchev M, Robatscher P et al (2004) How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 3:169–176. https://doi.org/10.1111/j.1474-9728.2004.00101.x PubMed DOI
Bollinger T, Schibler U (2014) Circadian rhythms-From genes to physiology and disease. Swiss Med Wkly. https://doi.org/10.4414/smw.2014.13984 PubMed DOI
Bollinger T, Leutz A, Leliavski A et al (2011) Circadian clocks in mouse and human CD4+ T cells. PLoS ONE 6:e29801. https://doi.org/10.1371/journal.pone.0029801 PubMed DOI PMC
Chen S, Fuller KK, Dunlap JC, Loros JJ (2020) A pro- and anti-inflammatory axis modulates the macrophage circadian clock. Front Immunol 11:867. https://doi.org/10.3389/fimmu.2020.00867 PubMed DOI PMC
Cherry JD, Olschowka JA, O’Banion M (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. https://doi.org/10.1186/1742-2094-11-98 PubMed DOI PMC
Chhor V, Le Charpentier T, Lebon S et al (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85. https://doi.org/10.1016/j.bbi.2013.02.005 PubMed DOI PMC
Chi-Castañeda D, Ortega A (2016) Clock genes in glia cells. ASN Neuro 8:175909141667076. https://doi.org/10.1177/1759091416670766 DOI
Coleman LG, Zou J, Crews FT (2020) Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. J Neuroinflammation 17:27. https://doi.org/10.1186/s12974-019-1678-y PubMed DOI PMC
Cui L, Jin X, Xu F et al (2021) Circadian rhythm-associated Rev-erbα modulates polarization of decidual macrophage via the PI3K/Akt signaling pathway. Am J Reprod Immunol. https://doi.org/10.1111/aji.13436 PubMed DOI
Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. https://doi.org/10.1038/nn1472 PubMed DOI
Duhart JM, Leone MJ, Paladino N et al (2013) Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-. J Immunol 191:4656–4664. https://doi.org/10.4049/jimmunol.1300450 PubMed DOI
Durafourt BA, Moore CS, Zammit DA et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727. https://doi.org/10.1002/glia.22298 PubMed DOI
Fonken LK, Frank MG, Kitt MM et al (2015) Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun 45:171–179. https://doi.org/10.1016/j.bbi.2014.11.009 PubMed DOI
Gao Z, Zhu Q, Zhang Y et al (2013) Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol 48:690–701. https://doi.org/10.1007/s12035-013-8460-4 PubMed DOI PMC
Greenhalgh AD, David S (2014) Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci 34:6316–6322. https://doi.org/10.1523/JNEUROSCI.4912-13.2014 PubMed DOI PMC
Greter M, Merad M (2013) Regulation of microglia development and homeostasis. Glia 61:121–127. https://doi.org/10.1002/glia.22408 PubMed DOI
Güldner FH (1983) Numbers of neurons and astroglial cells in the suprachiasmatic nucleus of male and female rats. Exp Brain Res 50:373–376. https://doi.org/10.1007/BF00239203 PubMed DOI
Hayashi Y (2013) Diurnal spatial rearrangement of microglial processes through the rhythmic expression of P2Y12 receptors. J Neurol Disord 01:1–7. https://doi.org/10.4172/2329-6895.1000120 DOI
Hu X, Leak RK, Shi Y et al (2014) Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11:56–64. https://doi.org/10.1038/nrneurol.2014.207 PubMed DOI PMC
Ji K, Akgul G, Wollmuth LP, Tsirka SE (2013) Microglia actively regulate the number of functional synapses. PLoS ONE 8:e56293. https://doi.org/10.1371/journal.pone.0056293 PubMed DOI PMC
Kabba JA, Xu Y, Christian H et al (2018) Microglia: housekeeper of the central nervous system. Cell Mol Neurobiol 38:53–71. https://doi.org/10.1007/s10571-017-0504-2 PubMed DOI
Kawai M, Rosen CJ (2010) PPARγ: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev Endocrinol 6:629–636. https://doi.org/10.1038/nrendo.2010.155 PubMed DOI PMC
Kettenmann H, Hoppe D, Gottmann K et al (1990) Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 26:278–287. https://doi.org/10.1002/jnr.490260303 PubMed DOI
Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415. https://doi.org/10.1016/0306-4522(92)90500-2 PubMed DOI
Li Y, Yang Y-Y, Ren J-L et al (2017) Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 8:198. https://doi.org/10.1186/s13287-017-0648-5 PubMed DOI PMC
Li Y, Shan Y, Desai RV et al (2020) Noise-driven cellular heterogeneity in circadian periodicity. Proc Natl Acad Sci 117:10350–10356. https://doi.org/10.1073/pnas.1922388117 PubMed DOI PMC
Martínez-Tapia RJ, Chavarría A, Navarro L (2020) Differences in diurnal variation of immune responses in microglia and macrophages: review and perspectives. Cell Mol Neurobiol 40:301–309. https://doi.org/10.1007/s10571-019-00736-x PubMed DOI
Matejuk A, Ransohoff RM (2020) Crosstalk between astrocytes and microglia: an overview. Front Immunol. https://doi.org/10.3389/fimmu.2020.01416 PubMed DOI PMC
Mosser EA, Chiu CN, Tamai TK et al (2019) Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Sci Rep 9:12405. https://doi.org/10.1038/s41598-019-48914-7 PubMed DOI PMC
Nakazato R, Hotta S, Yamada D et al (2017) The intrinsic microglial clock system regulates interleukin-6 expression. Glia 65:198–208. https://doi.org/10.1002/glia.23087 PubMed DOI
Norden DM, Trojanowski PJ, Walker FR, Godbout JP (2016) Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain. Neurobiol Aging 44:22–41. https://doi.org/10.1016/j.neurobiolaging.2016.04.014 PubMed DOI PMC
Novosadová Z, Polidarová L, Sládek M, Sumová A (2018) Alteration in glucose homeostasis and persistence of the pancreatic clock in aged mPer2Luc mice. Sci Rep 8:11668. https://doi.org/10.1038/s41598-018-30225-y PubMed DOI PMC
Okada K, Yano M, Doki Y et al (2008) Injection of LPS causes transient suppression of biological clock genes in rats. J Surg Res 145:5–12. https://doi.org/10.1016/j.jss.2007.01.010 PubMed DOI
Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665. https://doi.org/10.1111/bph.13139 PubMed DOI
Oster H, Damerow S, Kiessling S et al (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4:163–173. https://doi.org/10.1016/j.cmet.2006.07.002 PubMed DOI
Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99. https://doi.org/10.1016/j.tcb.2013.07.002 PubMed DOI
Peferoen L, Kipp M, van der Valk P et al (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141:302–313. https://doi.org/10.1111/imm.12163 PubMed DOI PMC
Pevet P, Challet E (2011) Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol 105:170–182. https://doi.org/10.1016/j.jphysparis.2011.07.001 DOI
Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. https://doi.org/10.1038/nrn3722 PubMed DOI
Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25:404–408. https://doi.org/10.1523/JNEUROSCI.4133-04.2005 PubMed DOI PMC
Rampersad SN (2012) Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12:12347–12360. https://doi.org/10.3390/s120912347 PubMed DOI PMC
Röhl C, Lucius R, Sievers J (2007) The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 1129:43–52. https://doi.org/10.1016/j.brainres.2006.10.057 PubMed DOI
Ronzano R, Roux T, Thetiot M et al (2021) Microglia-neuron interaction at nodes of Ranvier depends on neuronal activity through potassium release and contributes to remyelination. Nat Commun 12:5219. https://doi.org/10.1038/s41467-021-25486-7 PubMed DOI PMC
Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13:190–198. https://doi.org/10.1038/nri3386 PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019 PubMed DOI
Silver AC, Arjona A, Hughes ME et al (2012) Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun 26:407–413. https://doi.org/10.1016/j.bbi.2011.10.001 PubMed DOI
Sládek M, Sumová A (2019) Modulation of NMDA-mediated clock resetting in the suprachiasmatic nuclei of mPer2Luc mouse by endocannabinoids. Front Physiol. https://doi.org/10.3389/fphys.2019.00361 PubMed DOI PMC
Sládek M, Polidarová L, Nováková M et al (2012) Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS ONE 7:e46951. https://doi.org/10.1371/journal.pone.0046951 PubMed DOI PMC
Sominsky L, Dangel T, Malik S et al (2021) Microglial ablation in rats disrupts the circadian system. FASEB J. https://doi.org/10.1096/fj.202001555RR PubMed DOI
Son GH, Chung S, Choe HK et al (2008) Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci U S A 105:20970–20975. https://doi.org/10.1073/pnas.0806962106 PubMed DOI PMC
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018) Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci. https://doi.org/10.3389/fncel.2018.00323 PubMed DOI PMC
Takahashi K, Yamamura F, Naito M (1989) Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J Leukoc Biol 45:87–96. https://doi.org/10.1002/jlb.45.2.87 PubMed DOI
Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181–1194. https://doi.org/10.1007/s12035-014-9070-5 PubMed DOI
Tarassishin L, Suh HS, Lee SC (2014) LPS and IL-1 differentially activate mouse and human astrocytes: Role of CD14. Glia 62:999–1013. https://doi.org/10.1002/glia.22657 PubMed DOI PMC
Timmons GA, O’Siorain JR, Kennedy OD et al (2020) Innate rhythms: clocks at the center of monocyte and macrophage function. Front Immunol. https://doi.org/10.3389/fimmu.2020.01743 PubMed DOI PMC
Tinevez J-Y, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90. https://doi.org/10.1016/j.ymeth.2016.09.016 PubMed DOI
Tomida M, Yamamoto-Yamaguchi Y, Hozumi M (1984) Purification of a factor inducing differentiation of mouse myeloid leukemic M1 cells from conditioned medium of mouse fibroblast L929 cells. J Biol Chem 259:10978–10982 PubMed DOI
Wang X-L, Wolff SEC, Korpel N et al (2020) Deficiency of the circadian clock gene Bmal1 reduces microglial immunometabolism. Front Immunol. https://doi.org/10.3389/fimmu.2020.586399 PubMed DOI PMC
Wen L, You W, Wang H et al (2018) Polarization of microglia to the M2 phenotype in a peroxisome proliferator-activated receptor gamma-dependent manner attenuates axonal injury induced by traumatic brain injury in mice. J Neurotrauma 35:2330–2340. https://doi.org/10.1089/neu.2017.5540 PubMed DOI
Yamamoto T, Nakahata Y, Tanaka M et al (2005) Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J Biol Chem 280:42036–42043. https://doi.org/10.1074/jbc.M509600200 PubMed DOI
Yamazaki S, Takahashi JS (2005) In real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol 393:288–301 PubMed DOI PMC
Yoo S-H, Yamazaki S, Lowrey PL et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci 101:5339–5346. https://doi.org/10.1073/pnas.0308709101 PubMed DOI PMC