Cryptic diversity in Zoraptera: Latinozoros barberi (Gurney, 1938) is a complex of at least three species (Zoraptera: Spiralizoridae)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36696450
PubMed Central
PMC9876274
DOI
10.1371/journal.pone.0280113
PII: PONE-D-22-18443
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- nosítka * MeSH
- novokřídlí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Panama MeSH
- Střední Amerika MeSH
The order Zoraptera contains relatively few species, but current molecular phylogenetic studies suggest an unexpectedly high level of cryptic diversity in the order with many overlooked species based on morphology alone. Latinozoros Kukalova-Peck & Peck, 1993 represents the only genus of monotypic Latinozorinae (Zoraptera: Spiralizoridae) with only one species described, L. barberi (Gurney, 1938), until now. Although this species has been repeatedly reported from a number of locations in South and Central America, it is likely a complex of unrecognized species. Here, we present a molecular phylogenetic reconstruction revealing three genetically distinct lineages in Latinozoros, and we also present detailed morphological comparisons that prove the species status of Latinozoros cacaoensis sp. nov. from French Guiana and L. gimmeli sp. nov. from the Dominican Republic, Trinidad and Panama. The results indicate that the species previously referred to L. barberi is actually a species complex that includes L. barberi, the new species described here, and perhaps other species.
Zobrazit více v PubMed
Silvestri F. Descrizione di un nuovo ordine di insetti. Bol Lab Zool Gen e Agr R Scuola Super Agr Portici 1913;7: 193–209.
Choe JC. Biodiversity of Zoraptera and their little-known biology. In: Foottit RG, Adler PH, editors. Insect Biodiversity: Science and Society. John Wiley & Sons Ltd.; NY, USA, 2018. pp. 199–217.
Kočárek P, Horká I, Kundrata R. Molecular Phylogeny and Infraordinal Classification of Zoraptera (Insecta). Insects 2020;11: 51. doi: 10.3390/insects11010051 PubMed DOI PMC
Kočárek P, Horká I. Identity of DOI
Mashimo Y, Matsumura Y, Machida R, Dallai R, Gottardo M, Yoshizawa K, et al. 100 years Zoraptera—a phantom in insect evolution and the history of its investigation. Insect Syst Evol 2014;45: 371–393. doi: 10.1163/1876312X–45012110 DOI
Matsumura Y, Beutel RG, Rafael JA, Yao I, Câmara JT, Lima SP, et al. The evolution of Zoraptera. Syst Entomol 2020;45: 349–364. doi: 10.1111/syen.12400 DOI
Rafael JA, Engel MS. A new species of DOI
Flook PK, Klee S, Rowell CHF. Combined molecular phylogenetic analysis of the Orthoptera (Arthropoda, Insecta) and implications for their higher systematics. Syst Biol 1999;48: 233–253. doi: 10.1080/106351599260274 PubMed DOI
Whiting MF, Bradler S, Maxwell T. Loss and recovery of wings in stick insects. Nature 2003;421: 264–267. doi: 10.1038/nature01313 PubMed DOI
Jarvis KJ, Whiting MF. Phylogeny and biogeography of ice crawlers (Insecta: Grylloblattodea) based on six molecular loci: Designating conservation status for Grylloblattodea species. Mol Phyl Evol 2006;41: 222–237. doi: 10.1016/j.ympev.2006.04.013 PubMed DOI
Svenson GJ, Whiting MF. Reconstructing the origins of praying mantises (Dictyoptera, Mantodea): the roles of Gondwanan vicariance and morphological convergence. Cladistics 2009;25: 468–514. doi: 10.1111/j.1096-0031.2009.00263.x PubMed DOI
Terry MD, Whiting MF. Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics 2005;21: 240–257. doi: 10.1111/j.1096-0031.2005.00062.x DOI
Bradler S, Robertson JA, Whiting MF. A molecular phylogeny of Phasmatodea with emphasis on Necrosciinae, the most species‐rich subfamily of stick insects. Syst Entomol 2014;39: 205–222. doi: 10.1111/syen.12055 DOI
Ogden TH, Whiting MF. The problem with “the Paleoptera problem:” sense and sensitivity. Cladistics 2003;19: 432–442. doi: 10.1111/j.1096-0031.2003.tb00313.x PubMed DOI
Terry MD. Phylogeny of the polyneopterous insects with emphasis on Plecoptera: molecular and morpological evidence. Ph.D. Thesis, Brigham Young University. 2004. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2133&context=etd.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018;35: 1547–1549. doi: 10.1093/molbev/msy096 PubMed DOI PMC
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 2004;32: 1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Xia X. DAMBE6: New tools for microbial genomics, phylogenetics and molecular evolution. J Hered 2017;108: 431–437. doi: 10.1093/jhered/esx033 PubMed DOI PMC
Xia XH, Xie Z, Salemi M, Chen L, Wang Y. An index of substitution saturation and its application. Mol Phyl Evol 2003;26: 1–7. doi: 10.1016/s1055-7903(02)00326-3 PubMed DOI
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007;56: 564–577. doi: 10.1080/10635150701472164 PubMed DOI
Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multigene datasets with character set and codon information. Cladistics 2011;27: 171–180. doi: 10.1111/j.1096-0031.2010.00329.x PubMed DOI
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE 2010). IEEE, New Orleans, pp. 1–8. doi: 10.1109/GCE.2010.5676129 DOI
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 2016;34: 772–773. doi: 10.1093/molbev/msw260 PubMed DOI
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al., Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012;61: 539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6. 2014. (accessed 05 June 2022). http://tree.bio.ed.ac.uk/software/tracer/.
Stamatakis A. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucl Acids Res 2021;49: W293–W296. doi: 10.1093/nar/gkab301 PubMed DOI PMC
Kukalova-Peck J, Peck SB. Zoraptera wing structures: Evidence for new genera and relationship with the blattoid orders (Insecta: Blattoneoptera). Syst Entomol 1993;18: 333–350. doi: 10.1111/j.1365-3113.1993.tb00670.x DOI
Engel MS, Grimaldi DA. A winged
Gurney AB. A synopsis of the order Zoraptera, with notes on the biology of
Choe JC. DOI
Choe JC. Zoraptera of Panama with a review of the morphology, systematics, and biology of the order. In Insects of Panama and Mesoamerica: Selected Studies; Quintero D, Aiello A., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 249–256.
Aberlenc HP. Un nouvel ordre d’insectes en Guyane française: les Zoraptères. L’Entomologiste. 1995;51: 37–38.
Engel MS. A new
Engel MS, Gimmel ML. Additional Records of
Hubbard MD. A catalog of the order Zoraptera (Insecta). Insecta Mundi 1990;4: 49–66. https://journals.flvc.org/mundi/article/view/24653/23984.
Choe JC. Courtship feeding and repeated mating in DOI
Matsumura Y, Lima SP, Rafael JA, Câmara JT, Beutel RG, Gorb SN. Distal leg structures of Zoraptera–did the loss of adhesive devices curb the chance of diversification? Arthropod Struct Dev 2022;68: 101164. doi: 10.1016/j.asd.2022.101164 PubMed DOI
Shetlar DJ. Biological observations on