The Effect of Predeformation on Creep Strength of 9% Cr Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-18725S
Grantová Agentura České Republiky
19H00830
MEXT, Japan
PubMed
33255598
PubMed Central
PMC7728157
DOI
10.3390/ma13235330
PII: ma13235330
Knihovny.cz E-zdroje
- Klíčová slova
- creep-resistant 9%Cr steels, microstructure, severe plastic deformation,
- Publikační typ
- časopisecké články MeSH
Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1-30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and dynamic grain coarsening during creep.
Department of Materials Science Kyushu Institute of Technology Kitakyushu 804 8550 Japan
Magnesium Research Center Kumamoto University Kumamoto 860 8555 Japan
Synchrotron Light Application Center Saga University Saga 840 8502 Japan
Technology Department Nagano Forging Co Ltd Nagano 381 0003 Japan
Zobrazit více v PubMed
Li D.F., Dowd N.P.O., Davies C.M., Nikbin K.M. A review of the effect of prior inelastic deformation on high temperature mechanical response of engineering alloys. Int. J. Press. Vessel. Pip. 2010;87:531–542. doi: 10.1016/j.ijpvp.2010.07.010. DOI
Usami S., Mori T. Creep deformation of austenitic steels at medium and low temperatures. Cryogenics. 2000;40:117. doi: 10.1016/S0011-2275(00)00016-3. DOI
Kikuchi S., Ilschner B. Effects of a small prestrain at high temperatures on the creep behaviour of AISI 304 stainless steel. Scr. Metal. 1986;20:159–162. doi: 10.1016/0036-9748(86)90117-1. DOI
Sklenička V., Kuchařová K., Král P., Kvapilová M., Svobodová M., Čmakal J. The effect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe. Mater. Sci. Eng. A. 2015;644:297–309. doi: 10.1016/j.msea.2015.07.072. DOI
Caminada S., Cumino G., Cipolla L., Di Gianfrancesco A. Cold bending of advanced steels: ASTM grades T23, T92, T92. Int. J. Press. Vessel. Pip. 2009;86:853–861. doi: 10.1016/j.ijpvp.2009.10.001. DOI
Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel. Metall. Mater. Trans. A. 2003;34:913–925. doi: 10.1007/s11661-003-0222-x. DOI
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic materials. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Renk O., Pippan R. Saturation of Grain Refinement during Severe Plastic Deformation of Single Phase Materials: Reconsiderations, Current Status and Open Questions. Mater. Trans. 2019;60:1270–1282. doi: 10.2320/matertrans.MF201918. DOI
Ganeev A., Nikitina M., Sitdikov V., Islamgaliev R., Hoffman A., Wen H. Effects of the Tempering and High-Pressure Torsion Temperatures on Microstructure of Ferritic/Martensitic Steel Grade 91. Materials. 2018;11:627. doi: 10.3390/ma11040627. PubMed DOI PMC
Blum W., Dvorak J., Kral P., Eisenlohr P., Sklenicka V. Effect of grain refinement by ECAP on creep of pure Cu. Mater. Sci. Eng. A. 2014;590:423–432. doi: 10.1016/j.msea.2013.10.022. DOI
Kral P., Dvorak J., Sklenicka V., Langdon T.G. The Characteristics of creep in metallic materials processed by severe plastic deformation. Mater. Trans. 2019;60:1506–1517. doi: 10.2320/matertrans.MF201924. DOI
Kral P., Dvorak J., Sklenicka V., Masuda T., Horita Z., Kucharova K., Kvapilova M., Svobodova M. The effect of ultrafine-grained microstructure on creep behaviour of 9% Cr steel. Materials. 2018;11:787. doi: 10.3390/ma11050787. PubMed DOI PMC
Kostka A., Tak K.-G., Hellmig R.J., Estrin Y., Eggeler G. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steel. Acta Mater. 2007;55:539–550. doi: 10.1016/j.actamat.2006.08.046. DOI
Kral P., Dvorak J., Sklenicka V., Horita Z., Takizawa Y., Tang Y., Kvapilova M., Svobodova M. Effect of ultrafine-grained microstructure on creep behaviour in 304L austenitic steel. Mater. Sci. Eng. A. 2020;785:139383. doi: 10.1016/j.msea.2020.139383. DOI
Blum W., Dvorak J., Kral P., Eisenlohr P., Sklenicka V. Effects of grain refinement by ECAP on the deformation resistance of Al interpreted in terms of boundary-mediated processes. J. Mater. Sci. Technol. 2016;32:1309–1320. doi: 10.1016/j.jmst.2016.08.028. DOI
Blum W., Eisenlohr P. A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials; Proceedings of the 15th International Conference on the Strength of Materials (ICSMA-15); Dresden, Germany. 16–21 August 2009; Bristol, UK: IOP Publishing; 2010. p. 012136. DOI
Blum W., Dvorak J., Kral P., Eisenlohr P., Sklenicka V. Quasi-stationary strength of ECAP-processed Cu-Zr at 0.5 Tm. Metals. 2019;9:1149. doi: 10.3390/met9111149. DOI
Fujioka T., Horita Z. Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater. Trans. 2009;50:930–933. doi: 10.2320/matertrans.MRP2008445. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Kral P., Dvorak J., Sklenicka V., Masuda T., Horita Z., Kucharova K., Kvapilova M., Svobodova M. Microstructure and creep behaviour of P92 steel after HPT. Mater. Sci. Eng. A. 2018;723:287–295. doi: 10.1016/j.msea.2018.03.059. PubMed DOI PMC
Straub S., Meier M., Ostermann J., Blum W. Development of microstructure and strengthening in the ferritic Steel X20CrMoV121 at 823K during long-term creep tests and during annealing. VGB Kraftw. 1993;73:646–653.
Blum W., Zeng X.H. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater. 2009;57:1966–1974. doi: 10.1016/j.actamat.2008.12.041. DOI
Li Y., Zeng X., Blum W. Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater. 2004;52:5009–5018. doi: 10.1016/j.actamat.2004.07.003. DOI
Raj S.V., Pharr G.M. A compilation and analysis of data for the stress dependence of the subgrain size. Mater. Sci. Eng. A. 1986;81:217–237. doi: 10.1016/0025-5416(86)90265-X. DOI
Frost H.J., Ashby M.F. Deformation-Mechanism Maps. Pergamon Press; Oxford, UK: 1982. pp. 62–63.
Abe F. Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behaviour of tempered martensitic 9Cr-W steels. Metal. Mater. Trans. A. 2005;26:321–332. doi: 10.1007/s11661-005-0305-y. DOI