The Effect of Predeformation on Creep Strength of 9% Cr Steel

. 2020 Nov 25 ; 13 (23) : . [epub] 20201125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33255598

Grantová podpora
19-18725S Grantová Agentura České Republiky
19H00830 MEXT, Japan

Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1-30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and dynamic grain coarsening during creep.

Zobrazit více v PubMed

Li D.F., Dowd N.P.O., Davies C.M., Nikbin K.M. A review of the effect of prior inelastic deformation on high temperature mechanical response of engineering alloys. Int. J. Press. Vessel. Pip. 2010;87:531–542. doi: 10.1016/j.ijpvp.2010.07.010. DOI

Usami S., Mori T. Creep deformation of austenitic steels at medium and low temperatures. Cryogenics. 2000;40:117. doi: 10.1016/S0011-2275(00)00016-3. DOI

Kikuchi S., Ilschner B. Effects of a small prestrain at high temperatures on the creep behaviour of AISI 304 stainless steel. Scr. Metal. 1986;20:159–162. doi: 10.1016/0036-9748(86)90117-1. DOI

Sklenička V., Kuchařová K., Král P., Kvapilová M., Svobodová M., Čmakal J. The effect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe. Mater. Sci. Eng. A. 2015;644:297–309. doi: 10.1016/j.msea.2015.07.072. DOI

Caminada S., Cumino G., Cipolla L., Di Gianfrancesco A. Cold bending of advanced steels: ASTM grades T23, T92, T92. Int. J. Press. Vessel. Pip. 2009;86:853–861. doi: 10.1016/j.ijpvp.2009.10.001. DOI

Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel. Metall. Mater. Trans. A. 2003;34:913–925. doi: 10.1007/s11661-003-0222-x. DOI

Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic materials. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI

Renk O., Pippan R. Saturation of Grain Refinement during Severe Plastic Deformation of Single Phase Materials: Reconsiderations, Current Status and Open Questions. Mater. Trans. 2019;60:1270–1282. doi: 10.2320/matertrans.MF201918. DOI

Ganeev A., Nikitina M., Sitdikov V., Islamgaliev R., Hoffman A., Wen H. Effects of the Tempering and High-Pressure Torsion Temperatures on Microstructure of Ferritic/Martensitic Steel Grade 91. Materials. 2018;11:627. doi: 10.3390/ma11040627. PubMed DOI PMC

Blum W., Dvorak J., Kral P., Eisenlohr P., Sklenicka V. Effect of grain refinement by ECAP on creep of pure Cu. Mater. Sci. Eng. A. 2014;590:423–432. doi: 10.1016/j.msea.2013.10.022. DOI

Kral P., Dvorak J., Sklenicka V., Langdon T.G. The Characteristics of creep in metallic materials processed by severe plastic deformation. Mater. Trans. 2019;60:1506–1517. doi: 10.2320/matertrans.MF201924. DOI

Kral P., Dvorak J., Sklenicka V., Masuda T., Horita Z., Kucharova K., Kvapilova M., Svobodova M. The effect of ultrafine-grained microstructure on creep behaviour of 9% Cr steel. Materials. 2018;11:787. doi: 10.3390/ma11050787. PubMed DOI PMC

Kostka A., Tak K.-G., Hellmig R.J., Estrin Y., Eggeler G. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steel. Acta Mater. 2007;55:539–550. doi: 10.1016/j.actamat.2006.08.046. DOI

Kral P., Dvorak J., Sklenicka V., Horita Z., Takizawa Y., Tang Y., Kvapilova M., Svobodova M. Effect of ultrafine-grained microstructure on creep behaviour in 304L austenitic steel. Mater. Sci. Eng. A. 2020;785:139383. doi: 10.1016/j.msea.2020.139383. DOI

Blum W., Dvorak J., Kral P., Eisenlohr P., Sklenicka V. Effects of grain refinement by ECAP on the deformation resistance of Al interpreted in terms of boundary-mediated processes. J. Mater. Sci. Technol. 2016;32:1309–1320. doi: 10.1016/j.jmst.2016.08.028. DOI

Blum W., Eisenlohr P. A simple dislocation model of the influence of high-angle boundaries on the deformation behavior of ultrafine-grained materials; Proceedings of the 15th International Conference on the Strength of Materials (ICSMA-15); Dresden, Germany. 16–21 August 2009; Bristol, UK: IOP Publishing; 2010. p. 012136. DOI

Blum W., Dvorak J., Kral P., Eisenlohr P., Sklenicka V. Quasi-stationary strength of ECAP-processed Cu-Zr at 0.5 Tm. Metals. 2019;9:1149. doi: 10.3390/met9111149. DOI

Fujioka T., Horita Z. Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater. Trans. 2009;50:930–933. doi: 10.2320/matertrans.MRP2008445. DOI

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI

Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC

Kral P., Dvorak J., Sklenicka V., Masuda T., Horita Z., Kucharova K., Kvapilova M., Svobodova M. Microstructure and creep behaviour of P92 steel after HPT. Mater. Sci. Eng. A. 2018;723:287–295. doi: 10.1016/j.msea.2018.03.059. PubMed DOI PMC

Straub S., Meier M., Ostermann J., Blum W. Development of microstructure and strengthening in the ferritic Steel X20CrMoV121 at 823K during long-term creep tests and during annealing. VGB Kraftw. 1993;73:646–653.

Blum W., Zeng X.H. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater. 2009;57:1966–1974. doi: 10.1016/j.actamat.2008.12.041. DOI

Li Y., Zeng X., Blum W. Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater. 2004;52:5009–5018. doi: 10.1016/j.actamat.2004.07.003. DOI

Raj S.V., Pharr G.M. A compilation and analysis of data for the stress dependence of the subgrain size. Mater. Sci. Eng. A. 1986;81:217–237. doi: 10.1016/0025-5416(86)90265-X. DOI

Frost H.J., Ashby M.F. Deformation-Mechanism Maps. Pergamon Press; Oxford, UK: 1982. pp. 62–63.

Abe F. Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behaviour of tempered martensitic 9Cr-W steels. Metal. Mater. Trans. A. 2005;26:321–332. doi: 10.1007/s11661-005-0305-y. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...