The Effect of Ultrafine-Grained Microstructure on Creep Behaviour of 9% Cr Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29757206
PubMed Central
PMC5978164
DOI
10.3390/ma11050787
PII: ma11050787
Knihovny.cz E-zdroje
- Klíčová slova
- creep, creep-resistant 9%Cr steels, electron back scatter diffraction, ultrafine grained materials,
- Publikační typ
- časopisecké články MeSH
The effect of ultrafine-grained size on creep behaviour was investigated in P92 steel. Ultrafine-grained steel was prepared by one revolution of high-pressure torsion at room temperature. Creep tensile tests were performed at 873 K under the initially-applied stress range between 50 and 160 MPa. The microstructure was investigated using transmission electron microscopy and scanning electron microscopy equipped with an electron-back scatter detector. It was found that ultrafine-grained steel exhibits significantly faster minimum creep rates, and there was a decrease in the value of the stress exponent in comparison with coarse-grained P92 steel. Creep results also showed an abrupt decrease in the creep rate over time during the primary stage. The abrupt deceleration of the creep rate during the primary stage was shifted, with decreasing applied stress with longer creep times. The change in the decline of the creep rate during the primary stage was probably related to the enhanced precipitation of the Laves phase in the ultrafine-grained microstructure.
Zobrazit více v PubMed
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic materials. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Klimova M., Zherebtsov S., Stepanov N., Salishchev G., Haase C., Molodov D.A. Microstructure and texture evolution of a high manganese TWIP steel during cryo-rolling. Mater. Charact. 2017;132:20–30. doi: 10.1016/j.matchar.2017.07.043. DOI
Edalati K., Horita Z., Yagi S., Matsubara E. Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater. Sci. Eng. A. 2009;523:277–281. doi: 10.1016/j.msea.2009.07.029. DOI
Edalati K., Matsubara E., Horita Z. Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall. Mater. Trans. A. 2009;40:2079–2086. doi: 10.1007/s11661-009-9890-5. DOI
Meng F.Q., Tsuchiya K., Yokoyama Y. Crystalline to amorphous transformation in Zr-Cu-Al alloys induced by high pressure torsion. Intermetallics. 2013;37:52–58. doi: 10.1016/j.intermet.2013.01.021. DOI
Edalati K., Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A. 2016;652:325–352. doi: 10.1016/j.msea.2015.11.074. DOI
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Fujioka T., Horita Z. Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater. Trans. 2009;50:930–933. doi: 10.2320/matertrans.MRP2008445. DOI
Zherebtsov S., Kudryavtsev E., Kostjuchenko S., Malysheva S., Salishchev G. Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging. Mater. Sci. Eng. A. 2012;536:190–196. doi: 10.1016/j.msea.2011.12.102. DOI
Saito Y., Utsunomiya H., Tsuji N., Sakai T. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) proces. Acta Mater. 1999;47:579–583. doi: 10.1016/S1359-6454(98)00365-6. DOI
Huang Y., Sabbaghianrad S., Almazrouee A.I., Al-Fadhalah K.J., Alhajeri S.N., Langdon T.G. The significance of self-annealing at room temperature in high-purity copper processed by high-pressure torsion. Mater. Sci. Eng. A. 2016;656:55–66. doi: 10.1016/j.msea.2016.01.027. DOI
Edalati K., Uehiro R., Fujiwara K., Ikeda Y., Lia H.-W., Sauvage X., Valiev R.Z., Akiba E., Tanaka I., Horita Z. Ultra-severe plastic deformation: Evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems. Mater. Sci. Eng. A. 2017;701:158–166. doi: 10.1016/j.msea.2017.06.076. DOI
Valiev R.Z., Pushin V.G., Gunderov D.G., Popov A.G. The use of severe deformations for preparing bulk nanocrystalline materials from amorphous alloys. Dokl. Phys. 2004;49:519–521. doi: 10.1134/1.1810577. DOI
Edalati K., Horita Z. Application of high-pressure torsion for consolidation of ceramic powders. Scr. Mater. 2010;63:174–177. doi: 10.1016/j.scriptamat.2010.03.048. DOI
Straumal B.B., Kilmametov A.R., Korneva A., Mazilkin A.A., Straumal P.B., Zie P., Baretzky B. Phase transitions in Cu-based alloys under high pressure torsion. J. Alloys Comp. 2017;707:20–26. doi: 10.1016/j.jallcom.2016.12.057. DOI
Kumar P., Kawasaki M., Langdon T.G. Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. J. Mater. Sci. 2016;51:7–18. doi: 10.1007/s10853-015-9143-5. DOI
Zehetbauer M.J., Stüve H.P., Vorhauer A., Schafler E., Kohout J. The role of hydrostatic pressure in severe plastic deformation. Adv. Eng. Mater. 2003;5:330–337. doi: 10.1002/adem.200310090. DOI
Morozova A., Borodin E., Bratov V., Zherebtsov S., Belyakov A., Kaibyshev R. Grain refinement kinetics in a low alloyed Cu–Cr–Zr alloy subjected to large strain deformation. Materials. 2017;10:1394. doi: 10.3390/ma10121394. PubMed DOI PMC
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Král P., Dvořák J., Kvapilová M., Blum W., Sklenička V. The influence of long-term annealing at room temperature on creep behaviour of ECAP-processed copper. Mater. Lett. 2017;188:235–238. doi: 10.1016/j.matlet.2016.11.002. DOI
Král P., Blum W., Dvořák J., Eisenlohr P., Petrenec M., Sklenička V. Dynamic restoration of severely predeformed, ultrafine-grained pure Cu at 373 K observed in situ. Mater. Charact. 2017;134:329–334. doi: 10.1016/j.matchar.2017.11.006. DOI
Blum W., Zeng X.H. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater. 2009;57:1966–1974. doi: 10.1016/j.actamat.2008.12.041. DOI
Li Y.J., Zeng X.H., Blum W. Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater. 2014;52:5009–5018. doi: 10.1016/j.actamat.2004.07.003. DOI
Sklenička V., Dvorak J., Svoboda M. Creep in ultrafine grained aluminium. Mater. Sci. Eng. A. 2004;387–389:696–701. doi: 10.1016/j.msea.2004.01.111. DOI
Abe F., Kern T.-U., Viswanathan R. Creep-Resistant Steels. Woodhead Publishing; Sawston, Cambridge, UK: 2008.
Kaibyshev R.O., Skorobogatykh V.N., Shchenkova I.A. New martensitic steels for fossil power plant: Creep resistance. Phys. Metals Metallogr. 2010;109:186–200. doi: 10.1134/S0031918X10020110. DOI
Abe F. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Mater. Sci. Eng. A. 2001;319–321:770–7723. doi: 10.1016/S0921-5093(00)02002-5. DOI
Dudova N., Plotnikova A., Molodov D., Belyakov A., Kaibyshev R. Structural changes of tempered martensitic 9% Cr–2% W–3% Co steel during creep at 650 °C. Mater. Sci. Eng. A. 2012;543:632–639. doi: 10.1016/j.msea.2011.12.020. DOI
Spigarelli S., Cerri E., Bianchi P., Evangelista E. Interpretation of creep behavior of a 9Cr-Mo-Nb-V-N (T91) steel using threshold stress concept. Mater. Sci. Technol. 1999;15:1433–1440. doi: 10.1179/026708399101505428. DOI
Kostka A., Tak T.-G., Eggeler G. On the effect of equal-channel angular pressing on creep of tempered martensite ferritic steels. Mater. Sci. Eng. A. 2008;481–482:723–726. doi: 10.1016/j.msea.2007.02.154. DOI
Hattestrand M., Andren H.-O. Influence of strain on precipitation reactions during creep of an advanced 9% chromium steel. Acta Mater. 2001;49:2123–2128. doi: 10.1016/S1359-6454(01)00135-5. DOI
Hald J. Microstructure and long-term creep properties of 9–12% Cr steels. Int. J. Press. Vessels Pip. 2008;85:30–37. doi: 10.1016/j.ijpvp.2007.06.010. DOI
Li Q. Precipitation of Fe2W Laves phase and modelling of its direct influence on the strength of a 12Cr-2W steel. Metall. Mater. Trans. 2006;37:89–97. doi: 10.1007/s11661-006-0155-2. DOI
Prat O., Garcia J., Rojas D., Sauthoff G., Inden G. The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels. Intermetallics. 2013;32:362–372. doi: 10.1016/j.intermet.2012.08.016. DOI
Kassner M.E., Pérez-Prado M.-T. Fundamentals of Creep in Metals and Alloys. Elsevier; Amsterdam, The Netherlands: 2004. pp. 121–139.
Král P., Dvořák J., Jäger A., Kvapilová M., Horita Z., Sklenička V. Creep properties of aluminium processed by ECAP. Kovove Mater. 2016;54:441–451. doi: 10.4149/km_2016_6_441. DOI
Takizawa Y., Kajita T., Kral P., Masuda T., Watanabe K., Yumoto M., Otagiri Y., Sklenicka V., Horita Z. Super plasticity of Inconel 718 after processing by high-pressure sliding (HPS) Mater. Sci. Eng. A. 2017;682:603–612. doi: 10.1016/j.msea.2016.11.081. DOI
Kral P., Dvorak J., Sklenicka V., Masuda T., Horita Z., Kucharova K., Kvapilova M., Svobodova M. Microstructure and creep behaviour of P92 steel after HPT. Mater. Sci. Eng. A. 2018;723:287–295. doi: 10.1016/j.msea.2018.03.059. PubMed DOI PMC
Sklenicka V., Kuchařová K., Král P., Kvapilová M., Svobodová M., Čmakal J. The effect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe. Mater. Sci. Eng. A. 2015;644:297–309. doi: 10.1016/j.msea.2015.07.072. DOI
Čadek J., Šustek V., Pahutová M. An analysis of a set of creep data for a 9Cr-IMo-0.2V (P91 type) steel. Mater. Sci. Eng. A. 1997;225:22–28. doi: 10.1016/S0921-5093(96)10569-4. DOI
Sawada K., Takeda M., Maruyama K., Ishii R., Yamada M., Nagae Y., Komine R. Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Mater. Sci. Eng. A. 1999;267:19–25. doi: 10.1016/S0921-5093(99)00066-0. DOI
Maruyama K., Sawada K., Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int. 2001;41:641–653. doi: 10.2355/isijinternational.41.641. DOI
Sonderegger B., Mitsche S., Cerjak H. Microstructural analysis on a creep resistant martensitic 9–12% Cr steel using the EBSD method. Mater. Sci. Eng. A. 2008;481–482:466–470. doi: 10.1016/j.msea.2006.12.220. DOI
Abe F. Effect of fine precipitation and subsequent coarsening of fe2w laves phase on the creep deformation behavior of tempered martensitic 9cr-w steels. Metall. Mater. Trans. A. 2005;36:321–332. doi: 10.1007/s11661-005-0305-y. DOI
Aghajani A., Somsen C., Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater. 2009;57:5093–5106. doi: 10.1016/j.actamat.2009.07.010. DOI
Cui J., Kim I.-S., Kang C.-Y., Miyahara K. Creep stress effect on the precipitation behavior of Laves-phase in Fe–10% Cr–6%W alloys. ISIJ Int. 2001;41:368–371. doi: 10.2355/isijinternational.41.368. DOI
Panait C.G., Bendick W., Fuchsmann A., Gourgues-Lorenzon A.-F., Besson J. Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600 °C. Int. J. Press. Vessels Pip. 2010;87:326–335. doi: 10.1016/j.ijpvp.2010.03.017. DOI
Eggeler G. The effect of long-term creep on particle coarsening in tempered martensite ferritic steels. Acta Metall. 1989;37:3225–3234. doi: 10.1016/0001-6160(89)90194-6. DOI
Zhao Y.Z., Liao X.Z., Jin Z., Valiev R.Z., Zhu Y.T. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 2004;52:4589–4599. doi: 10.1016/j.actamat.2004.06.017. DOI
Hu T., Ma K., Topping T.D., Schoenung J.M., Lavernia E.J. Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 2013;61:2163–2178. doi: 10.1016/j.actamat.2012.12.037. DOI
Sawada K., Kubo K., Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel. Mater. Sci. Eng. A. 2001;319:784–787. doi: 10.1016/S0921-5093(01)00973-X. DOI
Kloc L., Sklenicka V. Transition from power-law to viscous creep behaviour of P-91 type heat-resistant steel. Mater. Sci. Eng. A. 1997;234:962–965. doi: 10.1016/S0921-5093(97)00364-X. DOI
Lee J.S., Armaki H.G., Maruyama K., Muraki T., Asahi H. Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel. Mater. Sci. Eng. A. 2006;428:270–275. doi: 10.1016/j.msea.2006.05.010. DOI
Kawasaki M., Langdon T.G. Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures. J. Mater. Sci. 2016;51:19–32. doi: 10.1007/s10853-015-9176-9. DOI
Zherebtsov S.V., Kudryavtsev E.A., Salishchev G.A., Straumal B.B., Semiatin S.L. Microstructure evolution and mechanical behavior of ultrafine Ti-6Al-4V during low-temperature superplastic deformation. Acta Mater. 2016;121:152–163. doi: 10.1016/j.actamat.2016.09.003. DOI
Abe F. Bainitic and martensitic creep/resistant steels. Curr. Opin. Solid State Mater. Sci. 2004;8:305–311. doi: 10.1016/j.cossms.2004.12.001. DOI
Agamennone R., Blum W., Gupta C., Chakravartty J.K. Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12% Cr–2% W–5% Co steels. Acta Mater. 2006;54:3003–3014. doi: 10.1016/j.actamat.2006.02.038. DOI
Langdon T.G. A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 1994;42:2437–2443. doi: 10.1016/0956-7151(94)90322-0. DOI
Frost H.J., Ashby M.F. Deformation-Mechanism Maps. Pergamon Press; Oxford, UK: 1982. pp. 62–63.
Blum W., Zeng X.H. Corrigendum to: “A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall-Petch strengthening and enhanced strain rate sensitivity”. Acta Mater. 2011;59:6205–6206. doi: 10.1016/j.actamat.2011.05.032. DOI
Owen D.M., Langdon T.G. Low stress creep behavior: An examination of Nabarro-Herring and Harper-Dorn creep. Mater. Sci. Eng. A. 1996;216:20–29. doi: 10.1016/0921-5093(96)10382-8. DOI
Abe F., Araki H., Noda T. The effect of tungsten on dislocation recovery and precipitation behaviour of low-activation martensitic 9Cr steels. Metall. Trans. A. 1991;22:2225–2235. doi: 10.1007/BF02664988. DOI
Burton B. Diffusional Creep of Polycrystalline Materials. Trans Tech S. A.; Aedermannsdorf, Switzerland: 1977. p. 119.
Creep Resistance of S304H Austenitic Steel Processed by High-Pressure Sliding
The Effect of Predeformation on Creep Strength of 9% Cr Steel
The Effect of Ultrafine-Grained Microstructure on Creep Behaviour of 9% Cr Steel