Creep Resistance of S304H Austenitic Steel Processed by High-Pressure Sliding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-18725S
Czech Science Foundation
PubMed
35009477
PubMed Central
PMC8746042
DOI
10.3390/ma15010331
PII: ma15010331
Knihovny.cz E-zdroje
- Klíčová slova
- austenitic steels, creep properties, severe plastic deformation,
- Publikační typ
- časopisecké články MeSH
Sheets of coarse-grained S304H austenitic steel were processed by high-pressure sliding (HPS) at room temperature and a ultrafine-grained microstructure with a mean grain size of about 0.14 µm was prepared. The microstructure changes and creep behavior of coarse-grained and HPS-processed steel were investigated at 500-700 °C under the application of different loads. It was found that the processing of S304H steel led to a significant improvement in creep strength at 500 °C. However, a further increase in creep temperature to 600 °C and 700 °C led to the deterioration of creep behavior of HPS-processed steel. The microstructure results suggest that the creep behavior of HPS-processed steel is associated with the thermal stability of the SPD-processed microstructure. The recrystallization, grain growth, the coarsening of precipitates led to a reduction in creep strength of the HPS-processed state. It was also observed that in the HPS-processed microstructure the fast formation of σ-phase occurs. The σ-phase was already formed during slight grain coarsening at 600 °C and its formation was enhanced after recrystallization at 700 °C.
Institute of Physics of Materials Czech Academy of Sciences Zizkova 22 616 00 Brno Czech Republic
Kyushu Institute of Technology Kitakyushu 804 8550 Japan
Magnesium Research Center Kumamoto University Kumamoto 860 8555 Japan
Synchrotron Light Application Center Saga University Saga 840 8502 Japan
Technology Department Nagano Forging Co Ltd Nagano 381 0003 Japan
Zobrazit více v PubMed
Viswanathan R., Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: Part 1. J. Mater. Eng. Perform. 2001;10:81–95. doi: 10.1361/105994901770345394. DOI
Abe F., Kern T.-U., Viswanathan R. Creep-Resistant Steels. Woodhead Publishing; Cambridge, UK: 2008.
Iseda A., Okada H., Semba H., Igarashi M. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers. Energy Mater. 2007;2:199–206. doi: 10.1179/174892408X382860. DOI
Abe F. Stress to produce a minimum creep rate of 10−5%/h and stress to cause rupture at 10-5h for ferritic and austentic steels and superalloys. Int. J. Press. Vessel. Pip. 2008;85:99–107. doi: 10.1016/j.ijpvp.2007.06.005. DOI
Peng X., Yan J., Zhou Y., Wang F. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air. Acta Mater. 2005;53:5079–5088. doi: 10.1016/j.actamat.2005.07.019. DOI
Zielinski A. Structure and properties of Super 304H steel for pressure elements of boilers with ultra-supercritical parameters. J. Achiev. Mater. Manuf. Eng. 2012;55:403–409.
Marshall P. Austenitic Stainless Steels: Microstructure and Mechanical Properties. Elsevier; London, UK: 1984.
Ishibashi R., Arakawa H., Abe T., Aono Y. Tensile properties of austenitic steels with grain refinement by mechanical milling. ISIJ Int. 2000;40:169–173. doi: 10.2355/isijinternational.40.Suppl_S169. DOI
Shakhova I., Belyakov A., Yanushkevich Z., Tsuzaki K., Kaibyshev R. On strengthening of austenitic stainless steel by large strain cold working. ISIJ Int. 2016;56:1289–1296. doi: 10.2355/isijinternational.ISIJINT-2016-095. DOI
Tikhonova M., Kuzminova Y., Belyakov A., Kaibyshev R. Nanocrystalline S304H austenitic stainless steel processed by multiple forging. Rev. Adv. Mater. Sci. 2012;31:68–73.
Mazilkin A., Straumal B., Kilmametov A., Straumal P., Baretzky B. Phase transformations induced by severe plastic deformation. Mater. Trans. 2019;60:1489–1499. doi: 10.2320/matertrans.MF201938. DOI
Straumal B.B., Kilmametov A.R., Korneva A., Mazilkin A.A., Straumal P.B., Zięba P., Baretzky B. Phase transitions in Cu-based alloys under high pressure torsion. J. Alloy. Compd. 2017;707:20–26. doi: 10.1016/j.jallcom.2016.12.057. DOI
Straumal B.B., Kilmametova A.R., López G.A., López-Ferreño I., Nó M.L., San Juan J., Hahn H., Baretzky B. High-pressure torsion driven phase transformations in Cu–Al–Ni shape memory alloys. Acta Mater. 2017;125:274–285. doi: 10.1016/j.actamat.2016.12.003. DOI
Gubicza J., El-Tahawy M., Huang Y., Choi H., Choe H., Lábár J.L., Langdon T.G. Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Mater. Sci. Eng. A. 2016;657:215–223. doi: 10.1016/j.msea.2016.01.057. DOI
Belyakov A., Odnobokova M., Shakhova I., Kaibyshev R. Regularities of microstructure evolution and strengthening mechanisms of austenitic stainless steels subjected to large strain cold working. Mater. Sci. Forum. 2016;879:224–229.
Kral P., Dvorak J., Sklenicka V., Horita Z., Takizawa Y., Tang Y., Kvapilova M., Svobodova M. Effect of ultrafine-grained microstructure on creep behaviour in 304L austenitic steel. Mater. Sci. Eng. A. 2020;785:139383. doi: 10.1016/j.msea.2020.139383. DOI
Forouzan F., Najafizadeh A., Kermanpur A., Hedayati A., Surkialiabad R. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process. Mater. Sci. Eng. A. 2010;527:7334–7339. doi: 10.1016/j.msea.2010.08.002. DOI
Yagodzinskyy Y., Pimenoff J., Tarasenko O., Romu J., Nenonen P., Hänninen H. Grain refinement processes for superplastic forming of AISI 304 and 304L austenitic stainless steels. Mater. Sci. Technol. 2004;20:925–929. doi: 10.1179/026708304225019678. DOI
Chen X.H., Lu J., Lu L., Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr. Mater. 2005;52:1039–1044. doi: 10.1016/j.scriptamat.2005.01.023. DOI
Abramova M.M., Enikeev N.A., Valiev R.Z., Etienne A., Radiguet B., Ivanisenko Y., Sauvage X. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater. Lett. 2014;136:349–352. doi: 10.1016/j.matlet.2014.07.188. DOI
Nam K., He Y., Shin K. Microstructural evolution of Super304H upon ultrasonic shot peening and subsequent annealing. J. Nanosci. Nanotechnol. 2018;18:6274–6277. doi: 10.1166/jnn.2018.15632. PubMed DOI
Park S.H.C., Sato Y.S., Kokawa H., Okamoto K., Hirano S., Inagaki M. Rapid formation of the sigma phase in 304 stainless steel during friction stir welding. Scr. Mater. 2003;49:1175–1180. doi: 10.1016/j.scriptamat.2003.08.022. DOI
Zhou Q., Liu J., Gao Y. An insight into oversaturated deformation-induced sigma precipitation in Super304H austenitic stainless steel. Mater. Des. 2019;181:108056. doi: 10.1016/j.matdes.2019.108056. DOI
Horváth J., Král P., Janovec J. The effect of σ-phase formation on long-term durability of welding joints in SUPER 304H steels. Acta Phys. Pol. A. 2016;130:960–962. doi: 10.12693/APhysPolA.130.960. DOI
Fujioka T., Horita Z. Development of High-Pressure Sliding Process for Microstructural Refinement of Rectangular Metallic Sheets. Mater. Trans. 2009;50:930–933. doi: 10.2320/matertrans.MRP2008445. DOI
Watanabe K., Ashida M., Masuda T., Kral P., Takizawa Y., Yumoto M., Otagiri Y., Sklenicka V., Hanawa T., Horita Z. Production of superplastic Ti–6Al–7Nb alloy using high-pressure sliding process. Mater. Trans. 2019;60:1785–1791. doi: 10.2320/matertrans.ME201924. DOI
Keller R.R., Geiss R.H. Transmission EBSD from 10 nm domains in a scanning electron microscope. J. Microsc. 2012;245:245–251. doi: 10.1111/j.1365-2818.2011.03566.x. DOI
Sano N., Hasegawa Y., Hono K., Jo H., Hirano K., Pickering H., Sakurai T. Precipitation process of Al-Sc alloys. J. Phys. Colloq. 1987;48:337–342. doi: 10.1051/jphyscol:1987655. DOI
Bai J.W., Liu P.P., Zhu Y.M., Li X.M., Chi C.Y., Yu H.Y., Xie X.S., Zhan Q. Coherent precipitation of copper in Super304H austenite steel. Mater. Sci. Eng. A. 2013;584:57–62. doi: 10.1016/j.msea.2013.06.082. DOI
Xu C., Furukawa M., Horita Z., Langdon T.G. Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy. Acta Mater. 2003;51:6139–6149. doi: 10.1016/S1359-6454(03)00433-6. DOI
Szezygiel P., Roven H.J., Reiso O. On the effect of SPD on recycled experimental aluminium alloys: Nanostructures, particle break-up and properties. Mater. Sci. Eng. A. 2005;410:261–264. doi: 10.1016/j.msea.2005.08.051. DOI
Cabibbo M., Evangelista E., Vedani M. Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy. Metall. Mater. Trans. A. 2005;36:1353–1364. doi: 10.1007/s11661-005-0226-9. DOI
Cheng S., Zhao Y.H., Zhu Y.T., Ma E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007;55:5822–5832. doi: 10.1016/j.actamat.2007.06.043. DOI
Gubicza J., Schiller I., Chinh N.Q., Illy J., Horita Z., Langdon T.G. The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A. 2007;460–461:77–85. doi: 10.1016/j.msea.2007.01.001. DOI
Singhal L.K., Bhargava S.N., Martin J.W. The effect of plastic deformation on the formation of sigma phase in an austenitic stainless steel. Metallography. 1972;5:31–39. doi: 10.1016/0026-0800(72)90079-1. DOI
Abe F., Araki H., Noda T. Discontinuous precipitation of σ-phase during recrystallisation in cold rolled Fe–10Cr–30Mn austenite. Mater. Sci. Technol. 1988;4:885–893. doi: 10.1179/mst.1988.4.10.885. DOI
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic materials. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Sauvage X., Wilde G., Divinski S.V., Horita Z., Valiev R.Z. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A. 2012;540:1–12. doi: 10.1016/j.msea.2012.01.080. DOI
El-Tahawy M., Pereira P.H.R., Huang Y., Park H., Choe H., Langdon T.G., Gubicza J. Exceptionally high strength and good ductility in an ultrafine-grained 316L steel processed by severe plastic deformation and subsequent annealing. Mater. Lett. 2018;540:240–242. doi: 10.1016/j.matlet.2017.12.040. DOI
Maruyama K., Sawada K., Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int. 2001;41:641–653. doi: 10.2355/isijinternational.41.641. DOI
Kral P., Dvorak J., Sklenicka V., Langdon T.G. The characteristics of creep in metallic materials processed by severe plastic deformation. Mater. Trans. 2019;60:1506–1517. doi: 10.2320/matertrans.MF201924. DOI
Sklenicka V., Dvorak J., Kral P., Stonawska Z., Svoboda M. Creep processes in pure aluminium processed by equal-channel angular pressing. Mater. Sci. Eng. A. 2005;410–411:408–412. doi: 10.1016/j.msea.2005.08.099. DOI
Blum W., Zeng X.H. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater. 2009;57:1966–1974. doi: 10.1016/j.actamat.2008.12.041. DOI
Kral P., Dvorak J., Sklenicka V., Masuda T., Horita Z., Kucharova K., Kvapilova M., Svobodova M. The effect of ultrafine-grained microstructure on creep behaviour of 9% Cr steel. Materials. 2018;11:787. doi: 10.3390/ma11050787. PubMed DOI PMC
Wilde G., Divinski S. Grain Boundaries and Diffusion Phenomena in Severely Deformed Materials. Mater. Trans. 2019;60:1302–1315. doi: 10.2320/matertrans.MF201934. DOI
Divinski S.V., Reglitz G., Rösner H., Estrin Y., Wilde G. Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 2011;59:1974–1985. doi: 10.1016/j.actamat.2010.11.063. DOI
Valiev R.Z. Structure and mechanical properties of ultrafine-grained metals. Mater. Sci. Eng. A. 1997;234–236:59–66. doi: 10.1016/S0921-5093(97)00183-4. DOI