• This record comes from PubMed

Creep Resistance of S304H Austenitic Steel Processed by High-Pressure Sliding

. 2022 Jan 03 ; 15 (1) : . [epub] 20220103

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-18725S Czech Science Foundation

Sheets of coarse-grained S304H austenitic steel were processed by high-pressure sliding (HPS) at room temperature and a ultrafine-grained microstructure with a mean grain size of about 0.14 µm was prepared. The microstructure changes and creep behavior of coarse-grained and HPS-processed steel were investigated at 500-700 °C under the application of different loads. It was found that the processing of S304H steel led to a significant improvement in creep strength at 500 °C. However, a further increase in creep temperature to 600 °C and 700 °C led to the deterioration of creep behavior of HPS-processed steel. The microstructure results suggest that the creep behavior of HPS-processed steel is associated with the thermal stability of the SPD-processed microstructure. The recrystallization, grain growth, the coarsening of precipitates led to a reduction in creep strength of the HPS-processed state. It was also observed that in the HPS-processed microstructure the fast formation of σ-phase occurs. The σ-phase was already formed during slight grain coarsening at 600 °C and its formation was enhanced after recrystallization at 700 °C.

See more in PubMed

Viswanathan R., Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: Part 1. J. Mater. Eng. Perform. 2001;10:81–95. doi: 10.1361/105994901770345394. DOI

Abe F., Kern T.-U., Viswanathan R. Creep-Resistant Steels. Woodhead Publishing; Cambridge, UK: 2008.

Iseda A., Okada H., Semba H., Igarashi M. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers. Energy Mater. 2007;2:199–206. doi: 10.1179/174892408X382860. DOI

Abe F. Stress to produce a minimum creep rate of 10−5%/h and stress to cause rupture at 10-5h for ferritic and austentic steels and superalloys. Int. J. Press. Vessel. Pip. 2008;85:99–107. doi: 10.1016/j.ijpvp.2007.06.005. DOI

Peng X., Yan J., Zhou Y., Wang F. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air. Acta Mater. 2005;53:5079–5088. doi: 10.1016/j.actamat.2005.07.019. DOI

Zielinski A. Structure and properties of Super 304H steel for pressure elements of boilers with ultra-supercritical parameters. J. Achiev. Mater. Manuf. Eng. 2012;55:403–409.

Marshall P. Austenitic Stainless Steels: Microstructure and Mechanical Properties. Elsevier; London, UK: 1984.

Ishibashi R., Arakawa H., Abe T., Aono Y. Tensile properties of austenitic steels with grain refinement by mechanical milling. ISIJ Int. 2000;40:169–173. doi: 10.2355/isijinternational.40.Suppl_S169. DOI

Shakhova I., Belyakov A., Yanushkevich Z., Tsuzaki K., Kaibyshev R. On strengthening of austenitic stainless steel by large strain cold working. ISIJ Int. 2016;56:1289–1296. doi: 10.2355/isijinternational.ISIJINT-2016-095. DOI

Tikhonova M., Kuzminova Y., Belyakov A., Kaibyshev R. Nanocrystalline S304H austenitic stainless steel processed by multiple forging. Rev. Adv. Mater. Sci. 2012;31:68–73.

Mazilkin A., Straumal B., Kilmametov A., Straumal P., Baretzky B. Phase transformations induced by severe plastic deformation. Mater. Trans. 2019;60:1489–1499. doi: 10.2320/matertrans.MF201938. DOI

Straumal B.B., Kilmametov A.R., Korneva A., Mazilkin A.A., Straumal P.B., Zięba P., Baretzky B. Phase transitions in Cu-based alloys under high pressure torsion. J. Alloy. Compd. 2017;707:20–26. doi: 10.1016/j.jallcom.2016.12.057. DOI

Straumal B.B., Kilmametova A.R., López G.A., López-Ferreño I., Nó M.L., San Juan J., Hahn H., Baretzky B. High-pressure torsion driven phase transformations in Cu–Al–Ni shape memory alloys. Acta Mater. 2017;125:274–285. doi: 10.1016/j.actamat.2016.12.003. DOI

Gubicza J., El-Tahawy M., Huang Y., Choi H., Choe H., Lábár J.L., Langdon T.G. Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Mater. Sci. Eng. A. 2016;657:215–223. doi: 10.1016/j.msea.2016.01.057. DOI

Belyakov A., Odnobokova M., Shakhova I., Kaibyshev R. Regularities of microstructure evolution and strengthening mechanisms of austenitic stainless steels subjected to large strain cold working. Mater. Sci. Forum. 2016;879:224–229.

Kral P., Dvorak J., Sklenicka V., Horita Z., Takizawa Y., Tang Y., Kvapilova M., Svobodova M. Effect of ultrafine-grained microstructure on creep behaviour in 304L austenitic steel. Mater. Sci. Eng. A. 2020;785:139383. doi: 10.1016/j.msea.2020.139383. DOI

Forouzan F., Najafizadeh A., Kermanpur A., Hedayati A., Surkialiabad R. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process. Mater. Sci. Eng. A. 2010;527:7334–7339. doi: 10.1016/j.msea.2010.08.002. DOI

Yagodzinskyy Y., Pimenoff J., Tarasenko O., Romu J., Nenonen P., Hänninen H. Grain refinement processes for superplastic forming of AISI 304 and 304L austenitic stainless steels. Mater. Sci. Technol. 2004;20:925–929. doi: 10.1179/026708304225019678. DOI

Chen X.H., Lu J., Lu L., Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr. Mater. 2005;52:1039–1044. doi: 10.1016/j.scriptamat.2005.01.023. DOI

Abramova M.M., Enikeev N.A., Valiev R.Z., Etienne A., Radiguet B., Ivanisenko Y., Sauvage X. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater. Lett. 2014;136:349–352. doi: 10.1016/j.matlet.2014.07.188. DOI

Nam K., He Y., Shin K. Microstructural evolution of Super304H upon ultrasonic shot peening and subsequent annealing. J. Nanosci. Nanotechnol. 2018;18:6274–6277. doi: 10.1166/jnn.2018.15632. PubMed DOI

Park S.H.C., Sato Y.S., Kokawa H., Okamoto K., Hirano S., Inagaki M. Rapid formation of the sigma phase in 304 stainless steel during friction stir welding. Scr. Mater. 2003;49:1175–1180. doi: 10.1016/j.scriptamat.2003.08.022. DOI

Zhou Q., Liu J., Gao Y. An insight into oversaturated deformation-induced sigma precipitation in Super304H austenitic stainless steel. Mater. Des. 2019;181:108056. doi: 10.1016/j.matdes.2019.108056. DOI

Horváth J., Král P., Janovec J. The effect of σ-phase formation on long-term durability of welding joints in SUPER 304H steels. Acta Phys. Pol. A. 2016;130:960–962. doi: 10.12693/APhysPolA.130.960. DOI

Fujioka T., Horita Z. Development of High-Pressure Sliding Process for Microstructural Refinement of Rectangular Metallic Sheets. Mater. Trans. 2009;50:930–933. doi: 10.2320/matertrans.MRP2008445. DOI

Watanabe K., Ashida M., Masuda T., Kral P., Takizawa Y., Yumoto M., Otagiri Y., Sklenicka V., Hanawa T., Horita Z. Production of superplastic Ti–6Al–7Nb alloy using high-pressure sliding process. Mater. Trans. 2019;60:1785–1791. doi: 10.2320/matertrans.ME201924. DOI

Keller R.R., Geiss R.H. Transmission EBSD from 10 nm domains in a scanning electron microscope. J. Microsc. 2012;245:245–251. doi: 10.1111/j.1365-2818.2011.03566.x. DOI

Sano N., Hasegawa Y., Hono K., Jo H., Hirano K., Pickering H., Sakurai T. Precipitation process of Al-Sc alloys. J. Phys. Colloq. 1987;48:337–342. doi: 10.1051/jphyscol:1987655. DOI

Bai J.W., Liu P.P., Zhu Y.M., Li X.M., Chi C.Y., Yu H.Y., Xie X.S., Zhan Q. Coherent precipitation of copper in Super304H austenite steel. Mater. Sci. Eng. A. 2013;584:57–62. doi: 10.1016/j.msea.2013.06.082. DOI

Xu C., Furukawa M., Horita Z., Langdon T.G. Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy. Acta Mater. 2003;51:6139–6149. doi: 10.1016/S1359-6454(03)00433-6. DOI

Szezygiel P., Roven H.J., Reiso O. On the effect of SPD on recycled experimental aluminium alloys: Nanostructures, particle break-up and properties. Mater. Sci. Eng. A. 2005;410:261–264. doi: 10.1016/j.msea.2005.08.051. DOI

Cabibbo M., Evangelista E., Vedani M. Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy. Metall. Mater. Trans. A. 2005;36:1353–1364. doi: 10.1007/s11661-005-0226-9. DOI

Cheng S., Zhao Y.H., Zhu Y.T., Ma E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007;55:5822–5832. doi: 10.1016/j.actamat.2007.06.043. DOI

Gubicza J., Schiller I., Chinh N.Q., Illy J., Horita Z., Langdon T.G. The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A. 2007;460–461:77–85. doi: 10.1016/j.msea.2007.01.001. DOI

Singhal L.K., Bhargava S.N., Martin J.W. The effect of plastic deformation on the formation of sigma phase in an austenitic stainless steel. Metallography. 1972;5:31–39. doi: 10.1016/0026-0800(72)90079-1. DOI

Abe F., Araki H., Noda T. Discontinuous precipitation of σ-phase during recrystallisation in cold rolled Fe–10Cr–30Mn austenite. Mater. Sci. Technol. 1988;4:885–893. doi: 10.1179/mst.1988.4.10.885. DOI

Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic materials. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI

Sauvage X., Wilde G., Divinski S.V., Horita Z., Valiev R.Z. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A. 2012;540:1–12. doi: 10.1016/j.msea.2012.01.080. DOI

El-Tahawy M., Pereira P.H.R., Huang Y., Park H., Choe H., Langdon T.G., Gubicza J. Exceptionally high strength and good ductility in an ultrafine-grained 316L steel processed by severe plastic deformation and subsequent annealing. Mater. Lett. 2018;540:240–242. doi: 10.1016/j.matlet.2017.12.040. DOI

Maruyama K., Sawada K., Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int. 2001;41:641–653. doi: 10.2355/isijinternational.41.641. DOI

Kral P., Dvorak J., Sklenicka V., Langdon T.G. The characteristics of creep in metallic materials processed by severe plastic deformation. Mater. Trans. 2019;60:1506–1517. doi: 10.2320/matertrans.MF201924. DOI

Sklenicka V., Dvorak J., Kral P., Stonawska Z., Svoboda M. Creep processes in pure aluminium processed by equal-channel angular pressing. Mater. Sci. Eng. A. 2005;410–411:408–412. doi: 10.1016/j.msea.2005.08.099. DOI

Blum W., Zeng X.H. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater. 2009;57:1966–1974. doi: 10.1016/j.actamat.2008.12.041. DOI

Kral P., Dvorak J., Sklenicka V., Masuda T., Horita Z., Kucharova K., Kvapilova M., Svobodova M. The effect of ultrafine-grained microstructure on creep behaviour of 9% Cr steel. Materials. 2018;11:787. doi: 10.3390/ma11050787. PubMed DOI PMC

Wilde G., Divinski S. Grain Boundaries and Diffusion Phenomena in Severely Deformed Materials. Mater. Trans. 2019;60:1302–1315. doi: 10.2320/matertrans.MF201934. DOI

Divinski S.V., Reglitz G., Rösner H., Estrin Y., Wilde G. Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 2011;59:1974–1985. doi: 10.1016/j.actamat.2010.11.063. DOI

Valiev R.Z. Structure and mechanical properties of ultrafine-grained metals. Mater. Sci. Eng. A. 1997;234–236:59–66. doi: 10.1016/S0921-5093(97)00183-4. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...