Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26880094
DOI
10.1007/s00775-016-1341-3
PII: 10.1007/s00775-016-1341-3
Knihovny.cz E-zdroje
- Klíčová slova
- Metal ion binding, NMR, RNA,
- MeSH
- hořčík chemie MeSH
- kadmium chemie MeSH
- kobalt chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- RNA chemie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hořčík MeSH
- kadmium MeSH
- kobalt MeSH
- RNA MeSH
Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped (1)H, (15)N, (13)C, and (31)P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5'-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be.
Zobrazit více v PubMed
Nat Struct Mol Biol. 2007 Jan;14(1):37-44 PubMed
Chembiochem. 2007 Feb 12;8(3):306-14 PubMed
Biochemistry. 2000 Jul 18;39(28):8193-200 PubMed
Chemistry. 2001 Sep 3;7(17):3729-37 PubMed
RNA. 2014 Apr;20(4):516-27 PubMed
Annu Rev Biochem. 1995;64:435-61 PubMed
J Mol Biol. 2000 Feb 4;295(5):1211-23 PubMed
Methods Mol Biol. 2012;848:253-73 PubMed
RNA. 2005 Jan;11(1):1-6 PubMed
J Biomol NMR. 1998 Jul;12(1):1-23 PubMed
Biochemistry. 2009 Feb 24;48(7):1498-507 PubMed
Nucleic Acids Res. 2013 Feb 1;41(4):2489-504 PubMed
J Am Chem Soc. 2004 Jul 28;126(29):8908-9 PubMed
Dalton Trans. 2008 Oct 7;(37):4965-74 PubMed
Nucleic Acids Res. 2005 Nov 27;33(21):6674-87 PubMed
Dalton Trans. 2008 Feb 28;(8):1081-6 PubMed
Proc Natl Acad Sci U S A. 1983 Jul;80(14):4330-3 PubMed
J Mol Biol. 2008 Jan 11;375(2):572-80 PubMed
J Inorg Biochem. 1993 Jan;49(1):1-8 PubMed
Met Ions Life Sci. 2011;9:37-100 PubMed
Methods Enzymol. 2009;468:335-67 PubMed
EMBO J. 1998 Dec 1;17(23):7105-17 PubMed
RNA. 2000 Feb;6(2):199-205 PubMed
Science. 2008 Apr 4;320(5872):77-82 PubMed
FEBS Lett. 1998 Aug 21;433(3):301-6 PubMed
Chem Commun (Camb). 2005 Apr 28;(16):2069-79 PubMed
J Am Chem Soc. 2004 Jan 21;126(2):663-72 PubMed
J Mol Biol. 2005 Aug 12;351(2):371-82 PubMed
J Am Chem Soc. 2002 May 1;124(17):4595-601 PubMed
Biochemistry. 2014 Jan 28;53(3):579-90 PubMed
Acta Crystallogr D Biol Crystallogr. 2010 Sep;66(Pt 9):988-1000 PubMed
Structure. 2007 Jul;15(7):761-72 PubMed
Biochemistry. 1997 Apr 22;36(16):4718-30 PubMed
Molecules. 2013 Nov 21;18(11):14414-29 PubMed
J Inorg Biochem. 2010 May;104(5):611-3 PubMed
Structure. 1996 Oct 15;4(10):1221-9 PubMed
RNA. 2007 Dec;13(12):2098-107 PubMed
Biochemistry. 1984 Oct 23;23(22):5262-71 PubMed
Nat Struct Mol Biol. 2004 Feb;11(2):187-92 PubMed
Genes Dev. 1999 Jul 1;13(13):1729-41 PubMed
Met Ions Life Sci. 2011;9:197-234 PubMed
Methods. 2001 Mar;23(3):201-5 PubMed
Met Ions Life Sci. 2013;11:191-274 PubMed
J Inorg Biochem. 1993 Feb 15;49(3):171-5 PubMed
Science. 1996 Mar 8;271(5254):1410-3 PubMed