Effect of Imposed Shear Strain on Steel Ring Surfaces during Milling in High-Speed Disintegrator
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00676S
Grantová Agentura České Republiky
FV40286
Ministerstvo Průmyslu a Obchodu
PubMed
32414022
PubMed Central
PMC7287960
DOI
10.3390/ma13102234
PII: ma13102234
Knihovny.cz E-zdroje
- Klíčová slova
- cement, disintegrator, high energy milling, microscopy, wear,
- Publikační typ
- časopisecké články MeSH
This contribution characterizes the performance of a DESI 11 high-speed disintegrator working on the principle of a pin mill with two opposite counter-rotating rotors. As the ground material, batches of Portland cement featuring 6-7 Mohs scale hardness and containing relatively hard and abrasive compounds with the specific surface areas ranging from 200 to 500 m2/kg, with the step of 50 m2/kg, were used. The character of the ground particles was assessed via scanning electron microscopy and measurement of the absolute/relative increase in their specific surface areas. Detailed characterization of the rotors was performed via recording the thermal imprints, evaluating their wear by 3D optical microscopy, and measuring rotor weight loss after the grinding of constant amounts of cement. The results showed that coarse particles are ground by impacting the front faces of the pins, while finer particles are primarily milled via mutual collisions. Therefore, the coarse particles cause higher abrasion and wear on the rotor pins; after the milling of 20 kg of the 200 m2/kg cement sample, the wear of the rotor reached up to 5% of its original mass and the pins were severely damaged.
Zobrazit více v PubMed
Thomasová M., Seiner H., Sedlák P., Frost M., Ševčík M., Szurman I., Kocich R., Drahokoupil J., Šittner P., Landa M. Evolution of macroscopic elastic moduli of martensitic polycrystalline NiTi and NiTiCu shape memory alloys with pseudoplastic straining. Acta Mater. 2017;123:146–156. doi: 10.1016/j.actamat.2016.10.024. DOI
Leo Samuel D.G., Dharmasastha K., Shiva Nagendra S.M., Maiya M.P. Thermal comfort in traditional buildings composed of local and modern construction materials. Int. J. Sustain. Built Environ. 2017;6:463–475. doi: 10.1016/j.ijsbe.2017.08.001. DOI
Naser M.Z. Properties and material models for modern construction materials at elevated temperatures. Comput. Mater. Sci. 2019;160:16–29. doi: 10.1016/j.commatsci.2018.12.055. DOI
Kunčická L., Kocich R. Comprehensive characterisation of a newly developed Mg-Dy-Al-Zn-Zr alloy structure. Metals. 2018;8:73. doi: 10.3390/met8010073. DOI
Zhang P., Li Z., Liu B., Ding W. Effect of chemical compositions on tensile behaviors of high pressure die-casting alloys Al-10Si-yCu-xMn-zFe. Mater. Sci. Eng. A. 2016;661:198–210. doi: 10.1016/j.msea.2016.03.032. DOI
Edalati K., Cubero-Sesin J.M., Alhamidi A., Mohamed I.F., Horita Z. Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: Investigation using high-pressure torsion. Mater. Sci. Eng. A. 2014;613:103–110. doi: 10.1016/j.msea.2014.06.084. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ecap and ECAP-PBP influence on Ti6Al4V alloy’s deformation behaviour; Proceedings of the Metal 2013: 22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; pp. 391–396.
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Joshi P.B., Marathe G.R., Murti N.S.S., Kaushik V.K., Ramakrishnan P. Reactive synthesis of titanium matrix composite powders. Mater. Lett. 2002;56:322–328. doi: 10.1016/S0167-577X(02)00476-7. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Stolyarov V.V., Zhu Y.T., Lowe T.C., Islamgaliev R.K., Valiev R.Z.R. Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Mater. Sci. Eng. A. 2000;282:78–85. doi: 10.1016/S0921-5093(99)00764-9. DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Wang X., Chen Y., Xu L., Xiao S., Kong F., Woo K. Do Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering. J. Mech. Behav. Biomed. Mater. 2011;4:2074–2080. doi: 10.1016/j.jmbbm.2011.07.006. PubMed DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable deformation temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Surzhenkov A., Viljus M., Simson T., Tarbe R., Saarna M., Casesnoves F. Wear resistance and mechanisms of composite hardfacings at abrasive impact erosion wear. J. Phys. Conf. Ser. 2017;843:012060. doi: 10.1088/1742-6596/843/1/012060. DOI
Muroi M., Street R., McCormick P.G. Structural and Magnetic Properties of Ultrafine La0.7Ca0.3MnOz Powders Prepared by Mechanical Alloying. J. Solid State Chem. 2000;152:503–510.
Razavi Tousi S.S., Yazdani Rad R., Salahi E., Mobasherpour I., Razavi M. Production of Al–20 wt.% Al2O3 composite powder using high energy milling. Powder Technol. 2009;192:346–351. doi: 10.1016/j.powtec.2009.01.016. DOI
Serena S., Caballero A., Turrillas X., Martin D., Sainz M.A. Effect of ceramic nanoparticles on the solid-state reaction mechanism of dolomite–zirconium oxide followed by neutron thermodiffraction measurements. J. Nanopart. Res. 2009;11:869–878. doi: 10.1007/s11051-008-9466-0. DOI
Rojac T., Kosec M., Malič B., Holc J. Mechanochemical synthesis of NaNbO3. Mater. Res. Bull. 2005;40:341–345. doi: 10.1016/j.materresbull.2004.10.018. DOI
Hint J. Fundamentals of Silicalcite Production. Strojizdat; Moscow, Russia: 1962. (In Russian)
Bumanis G., Bajare D., Goljandin D. Performance evaluation of cement mortar and concrete with incorporated micro fillers obtained by collision milling in disintegrator. Ceram. Silik. 2017;61:231–243. doi: 10.13168/cs.2017.0021. DOI
Bumanis G., Bajare D. Compressive Strength of Cement Mortar Affected by Sand Microfiller Obtained with Collision Milling in Disintegrator. Procedia Eng. 2017;172:149–156. doi: 10.1016/j.proeng.2017.02.037. DOI
Kovalev P.I. Influence of shock destruction of solid and liquid particles in the supersonic flow around a solid two-phase flow. J. Appl. Phys. 2008;78:40–46.
Baláž P. Mechanochemistry in Nanoscience and Minerals Engineering. Springer; Berlin/Heidelberg, Germany: 2008. High-Energy Milling; pp. 103–132.
Starman B., Hallberg H., Wallin M., Ristinmaa M., Halilovič M. Differences in phase transformation in laser peened and shot peened 304 austenitic steel. Int. J. Mech. Sci. 2020;176:105535. doi: 10.1016/j.ijmecsci.2020.105535. DOI
Silva K.H.S., Carneiro J.R., Coelho R.S., Pinto H., Brito P. Influence of shot peening on residual stresses and tribological behavior of cast and austempered ductile iron. Wear. 2019;440–441:203099. doi: 10.1016/j.wear.2019.203099. DOI
Han X., Zhang Z., Hou J., Barber G.C., Qiu F. Tribological behavior of shot peened/austempered AISI 5160 steel. Tribol. Int. 2020;145:106197. doi: 10.1016/j.triboint.2020.106197. DOI
Misra A., Finnie I. On the size effect in abrasive and erosive wear. Wear. 1981;65:359–373. doi: 10.1016/0043-1648(81)90062-4. DOI
Larsen-Badse J. Influence of grit diameter and specimen size on wear during sliding abrasion. Wear. 1968;12:35–53. doi: 10.1016/0043-1648(68)90574-7. DOI
Gåhlin R., Jacobson S. The particle size effect in abrasion studied by controlled abrasive surfaces. Wear. 1999;224:118–125. doi: 10.1016/S0043-1648(98)00344-5. DOI
Hewlett P. Lea’s Chemistry of Cement and Concrete. Elsevier; Amsterdam, The Netherlands: 2004.
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials