Kinetics of Biomarkers of Oxidative Stress in Septic Shock: A Pilot Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35453325
PubMed Central
PMC9031382
DOI
10.3390/antiox11040640
PII: antiox11040640
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant, asymmetric dimethylarginine, biomarker, neopterin, oxidative stress, sepsis, septic shock, soluble endoglin, superoxide dismutase,
- Publikační typ
- časopisecké články MeSH
Septic shock is a major cause of mortality in ICU patients, its pathophysiology is complex and not properly understood. Oxidative stress seems to be one of the most important mechanisms of shock progression to multiple organ failure. In the present pilot study, we have analysed eight oxidative-stress-related biomarkers in seven consecutive time points (i.e., the first seven days) in 21 septic shock patients admitted to the ICU. Our objective was to describe the kinetics of four biomarkers related to pro-oxidative processes (nitrite/nitrate, malondialdehyde, 8-oxo-2'-deoxyguanosine, soluble endoglin) compared to four biomarkers of antioxidant processes (the ferric reducing ability of plasma, superoxide dismutase, asymmetric dimethylarginine, mid-regional pro-adrenomedullin) and four inflammatory biomarkers (CRP, IL-6, IL-10 and neopterin). Furthermore, we analysed each biomarker's ability to predict mortality at the time of admission and 12 h after admission. Although a small number of study subjects were recruited, we have identified four promising molecules for further investigation: soluble endoglin, superoxide dismutase, asymmetric dimethylarginine and neopterin.
Department of Biochemistry Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Department of Internal Medicine and Cardiology University Hospital Brno 625 00 Brno Czech Republic
Department of Laboratory Methods Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 656 91 Brno Czech Republic
Zobrazit více v PubMed
Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Mantzarlis K., Tsolaki V., Zakynthinos E. Role of Oxidative Stress and Mitochondrial Dysfunction in Sepsis and Potential Therapies. Oxid. Med. Cell. Longev. 2017;2017:5985209. doi: 10.1155/2017/5985209. PubMed DOI PMC
Prauchner C.A. Oxidative Stress in Sepsis: Pathophysiological Implications Justifying Antioxidant Co-Therapy. Burns. 2017;43:471–485. doi: 10.1016/j.burns.2016.09.023. PubMed DOI
Parenica J., Kala P., Mebazaa A., Littnerova S., Benesova K., Tomandl J., Goldbergová Pavkova M., Jarkovský J., Spinar J., Tomandlova M., et al. Activation of the Nitric Oxide Pathway and Acute Myocardial Infarction Complicated by Acute Kidney Injury. Cardiorenal Med. 2020;10:85–96. doi: 10.1159/000503718. PubMed DOI
Tomandlova M., Parenica J., Lokaj P., Ondrus T., Kala P., Miklikova M., Helanova K., Helan M., Malaska J., Benesova K., et al. Prognostic Value of Oxidative Stress in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock: A Prospective Cohort Study. Free Radic. Biol. Med. 2021;174:66–72. doi: 10.1016/j.freeradbiomed.2021.07.040. PubMed DOI
Frijhoff J., Winyard P.G., Zarkovic N., Davies S.S., Stocker R., Cheng D., Knight A.R., Taylor E.L., Oettrich J., Ruskovska T., et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015;23:1144–1170. doi: 10.1089/ars.2015.6317. PubMed DOI PMC
Ayala J.C., Grismaldo A., Sequeda-Castañeda L.G., Aristizábal-Pachón A.F., Morales L. Oxidative Stress in ICU Patients: ROS as Mortality Long-Term Predictor. Antioxidants. 2021;10:1912. doi: 10.3390/antiox10121912. PubMed DOI PMC
World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053. PubMed DOI
Khoschsorur G.A., Winklhofer-Roob B.M., Rabl H., Auer T., Peng Z., Schaur R.J. Evaluation of a Sensitive HPLC Method for the Determination of Malondialdehyde, and Application of the Method to Different Biological Materials. Chromatographia. 2000;52:181–184. doi: 10.1007/BF02490453. DOI
Suzuki S., Shishido T., Ishino M., Katoh S., Sasaki T., Nishiyama S., Miyashita T., Miyamoto T., Nitobe J., Watanabe T., et al. 8-Hydroxy-2’-Deoxyguanosine Is a Prognostic Mediator for Cardiac Event. Eur. J. Clin. Investig. 2011;41:759–766. doi: 10.1111/j.1365-2362.2010.02465.x. PubMed DOI
Benzie I.F., Strain J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Gieseg S.P., Baxter-Parker G., Lindsay A. Neopterin, Inflammation, and Oxidative Stress: What Could We Be Missing? Antioxidants. 2018;7:80. doi: 10.3390/antiox7070080. PubMed DOI PMC
Murr C., Widner B., Wirleitner B., Fuchs D. Neopterin as a Marker for Immune System Activation. Curr. Drug Metab. 2002;3:175–187. doi: 10.2174/1389200024605082. PubMed DOI
Annane D., Sanquer S., Sébille V., Faye A., Djuranovic D., Raphaël J.C., Gajdos P., Bellissant E. Compartmentalised Inducible Nitric-Oxide Synthase Activity in Septic Shock. Lancet. 2000;355:1143–1148. doi: 10.1016/S0140-6736(00)02063-8. PubMed DOI
Martin G., Asensi V., Montes A.H., Collazos J., Alvarez V., Pérez-Is L., Carton J.A., Taboada F., Valle-Garay E. Endothelial (NOS3 E298D) and Inducible (NOS2 Exon 22) Nitric Oxide Synthase Polymorphisms, as Well as Plasma NOx, Influence Sepsis Development. Nitric Oxide Biol. Chem. 2014;42:79–86. doi: 10.1016/j.niox.2014.09.004. PubMed DOI
Ho J.T., Chapman M.J., O’Connor S., Lam S., Edwards J., Ludbrook G., Lewis J.G., Torpy D.J. Characteristics of Plasma NOx Levels in Severe Sepsis: High Interindividual Variability and Correlation with Illness Severity, but Lack of Correlation with Cortisol Levels. Clin. Endocrinol. 2010;73:413–420. doi: 10.1111/j.1365-2265.2010.03817.x. PubMed DOI
Lupp C., Baasner S., Ince C., Nocken F., Stover J.F., Westphal M. Differentiated control of deranged nitric oxide metabolism: A therapeutic option in sepsis? Crit. Care. 2013;17:311. doi: 10.1186/cc12538. PubMed DOI PMC
Opal S.M., van der Poll T. Endothelial Barrier Dysfunction in Septic Shock. J. Intern. Med. 2015;277:277–293. doi: 10.1111/joim.12331. PubMed DOI
La Sala L., Pujadas G., De Nigris V., Canivell S., Novials A., Genovese S., Ceriello A. Oscillating Glucose and Constant High Glucose Induce Endoglin Expression in Endothelial Cells: The Role of Oxidative Stress. Acta Diabetol. 2015;52:505–512. doi: 10.1007/s00592-014-0670-3. PubMed DOI
Jezkova K., Rathouska J., Nemeckova I., Fikrova P., Dolezelova E., Varejckova M., Vitverova B., Tysonova K., Serwadczak A., Buczek E., et al. High Levels of Soluble Endoglin Induce a Proinflammatory and Oxidative-Stress Phenotype Associated with Preserved NO-Dependent Vasodilatation in Aortas from Mice Fed a High-Fat Diet. J. Vasc. Res. 2016;53:149–162. doi: 10.1159/000448996. PubMed DOI
Jerkic M., Letarte M. Contribution of Oxidative Stress to Endothelial Dysfunction in Hereditary Hemorrhagic Telangiectasia. Front. Genet. 2015;6:34. doi: 10.3389/fgene.2015.00034. PubMed DOI PMC
Aristorena M., Blanco F.J., de Las Casas-Engel M., Ojeda-Fernandez L., Gallardo-Vara E., Corbi A., Botella L.M., Bernabeu C. Expression of Endoglin Isoforms in the Myeloid Lineage and Their Role during Aging and Macrophage Polarization. J. Cell Sci. 2014;127:2723–2735. doi: 10.1242/jcs.143644. PubMed DOI
Kumar S., Pan C.C., Bloodworth J.C., Nixon A.B., Theuer C., Hoyt D.G., Lee N.Y. Antibody-Directed Coupling of Endoglin and MMP-14 Is a Key Mechanism for Endoglin Shedding and Deregulation of TGF-β Signaling. Oncogene. 2014;33:3970–3979. doi: 10.1038/onc.2013.386. PubMed DOI PMC
Ojeda-Fernández L., Recio-Poveda L., Aristorena M., Lastres P., Blanco F.J., Sanz-Rodríguez F., Gallardo-Vara E., de las Casas-Engel M., Corbí Á., Arthur H.M., et al. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response. PLoS Genet. 2016;12:e1005935. doi: 10.1371/journal.pgen.1005935. PubMed DOI PMC
Zemankova L., Varejckova M., Dolezalova E., Fikrova P., Jezkova K., Rathouska J., Cerveny L., Botella L.M., Bernabeu C., Nemeckova I., et al. Atorvastatin-Induced Endothelial Nitric Oxide Synthase Expression in Endothelial Cells Is Mediated by Endoglin. J. Physiol. Pharmacol. 2015;66:403–413. PubMed
Carr A.C., Bozonet S., Pullar J., Spencer E., Rosengrave P., Shaw G. Neutrophils Isolated from Septic Patients Exhibit Elevated Uptake of Vitamin C and Normal Intracellular Concentrations despite a Low Vitamin C Milieu. Antioxidants. 2021;10:1607. doi: 10.3390/antiox10101607. PubMed DOI PMC
Kim S.-M., Kim J.-Y., Lee S., Park J.-H. Adrenomedullin Protects against Hypoxia/Reoxygenation-Induced Cell Death by Suppression of Reactive Oxygen Species via Thiol Redox Systems. FEBS Lett. 2010;584:213–218. doi: 10.1016/j.febslet.2009.11.063. PubMed DOI
Yoshimoto T., Fukai N., Sato R., Sugiyama T., Ozawa N., Shichiri M., Hirata Y. Antioxidant Effect of Adrenomedullin on Angiotensin II-Induced Reactive Oxygen Species Generation in Vascular Smooth Muscle Cells. Endocrinology. 2004;145:3331–3337. doi: 10.1210/en.2003-1583. PubMed DOI
Vincent J.L., de Mendonça A., Cantraine F., Moreno R., Takala J., Suter P.M., Sprung C.L., Colardyn F., Blecher S. Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/Failure in Intensive Care Units: Results of a Multicenter, Prospective Study. Working Group on “Sepsis-Related Problems” of the European Society of Intensive Care Medicine. Crit. Care Med. 1998;26:1793–1800. doi: 10.1097/00003246-199811000-00016. PubMed DOI
Moskowitz A., Andersen L.W., Cocchi M.N., Karlsson M., Patel P.V., Donnino M.W. Thiamine as a Renal Protective Agent in Septic Shock. A Secondary Analysis of a Randomized, Double-Blind, Placebo-Controlled Trial. Ann. Am. Thorac. Soc. 2017;14:737–741. doi: 10.1513/AnnalsATS.201608-656BC. PubMed DOI PMC
Zabet M.H., Mohammadi M., Ramezani M., Khalili H. Effect of High-Dose Ascorbic Acid on Vasopressor’s Requirement in Septic Shock. J. Res. Pharm. Pract. 2016;5:94–100. doi: 10.4103/2279-042X.179569. PubMed DOI PMC
Chertoff J. N-Acetylcysteine’s Role in Sepsis and Potential Benefit in Patients with Microcirculatory Derangements. J. Intensive Care Med. 2018;33:87–96. doi: 10.1177/0885066617696850. PubMed DOI
Fang M., Zou T., Yang X., Zhang Z., Cao P., Han J., Duan Y., Ruan B.-F., Li Q.-S. Discovery of Novel Pterostilbene Derivatives That Might Treat Sepsis by Attenuating Oxidative Stress and Inflammation through Modulation of MAPKs/NF-ΚB Signaling Pathways. Antioxidants. 2021;10:1333. doi: 10.3390/antiox10091333. PubMed DOI PMC
Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017;151:1229–1238. doi: 10.1016/j.chest.2016.11.036. PubMed DOI
Prognostic value of soluble endoglin in patients with septic shock and severe COVID-19