Effect of Gentamicin Sulfate and Polymeric Polyethylene Glycol Coating on the Degradation and Cytotoxicity of Iron-Based Biomaterials

. 2024 Jun 25 ; 9 (25) : 27113-27126. [epub] 20240612

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38947814

The work is focused on the degradation, cytotoxicity, and antibacterial properties, of iron-based biomaterials with a bioactive coating layer. The foam and the compact iron samples were coated with a polyethylene glycol (PEG) polymer layer without and with gentamicin sulfate (PEG + Ge). The corrosion properties of coated and uncoated samples were studied using the degradation testing in Hanks' solution at 37 °C. The electrochemical and static immersion corrosion tests revealed that the PEG-coated samples corroded faster than samples with the bioactive PEG + Ge coating and uncoated samples. The foam samples corroded faster compared with the compact samples. To determine the cytotoxicity, cell viability was monitored in the presence of porous foam and compact iron samples. The antibacterial activity of the samples with PEG and PEG + Ge against Escherichia coli CCM 3954 and Staphylococcus aureus CCM 4223 strains was also tested. Tested PEG + Ge samples showed significant antibacterial activity against both bacterial strains. Therefore, the biodegradable iron-based materials with a bioactive coating could be a suitable successor to the metal materials studied thus far as well as the materials used in the field of medicine.

Zobrazit více v PubMed

Li Y.; Jahr H.; Lietaert K.; Pavanram P.; Yilmaz A.; Fockaert L. I.; Leeflang M. A.; Pouran B.; Gonzalez-Garcia Y.; Weinans H.; Mol J. M. C.; Zhou J.; Zadpoor A. A. Additively manufactured biodegradable porous iron. Acta Biomater 2018, 77, 380–393. 10.1016/j.actbio.2018.07.011. PubMed DOI

Zhao D.; Witte F.; Lu F.; Wang J.; Li J.; Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 2017, 112, 287–302. 10.1016/j.biomaterials.2016.10.017. PubMed DOI

Priyadarshini B.; Rama M.; Chetan; Vijayalakshmi U. Bioactive coating as a surface modification technique for biocompatible metallic implants: a review. J. Asian Ceram. Soc. 2019, 7, 397–406. 10.1080/21870764.2019.1669861. DOI

Asri R. I. M.; Harun W. S. W.; Samykano M.; Lah N. A. C.; Ghani S. A. C.; Tarlochan F.; Raza M. R. Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering C 2017, 77, 1261–1274. 10.1016/j.msec.2017.04.102. PubMed DOI

Niinomi M. Recent research and development in metallic materials for biomedical, dental and healthcare products applications. Mater. Sci. Forum 2007, 539–543, 193–200. 10.4028/0-87849-428-6.193. DOI

Aghion E. Biodegradable metals. Metals 2018, 8, 804. 10.3390/met8100804. DOI

Bowen P. K.; Shearier E. R.; Zhao S.; Guillory R. J.; Zhao F.; Goldman J.; Drelich J. W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Adv. Healthc Mater. 2016, 5, 1121–1140. 10.1002/adhm.201501019. PubMed DOI PMC

Hanker J.; Giammara B. Biomaterials and biomedical devices. Science 1979, 242 (4880), 885–892. 10.1126/science.3055300. PubMed DOI

Agrawal C. M. Reconstructing the human body using biomaterials. JOM 1998, 50, 31–35. 10.1007/s11837-998-0064-5. DOI

Yazdimamaghani M.; Razavi M.; Vashaee D.; Moharamzadeh K.; Boccaccini A. R.; Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Materials Science and Engineering C 2017, 71, 1253–1266. 10.1016/j.msec.2016.11.027. PubMed DOI

Salama M.; Vaz M.F.; Colaço R.; Santos C.; Carmezim M., Biodegradable Iron and Porous Iron: Mechanical Properties, Degradation Behaviour, Manufacturing Routes and Biomedical Applications, J. Funct Biomater 13 (2022). DOI: 72. 10.3390/jfb13020072. PubMed DOI PMC

Wang X.; Xu S.; Zhou S.; Xu W.; Leary M.; Choong P.; Qian M.; Brandt M.; Xie Y. M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127–141. 10.1016/j.biomaterials.2016.01.012. PubMed DOI

Oriňaková R.; Gorejová R.; Králová Z. O.; Petráková M.; Oriňak A. Novel trends and recent progress on preparation methods of biodegradable metallic foams for biomedicine: a review. J. Mater. Sci. 2021, 56, 13925–13963. 10.1007/s10853-021-06163-y. DOI

Ma P. X. Biomimetic materials for tissue engineering. Adv. Drug Deliv Rev. 2008, 60, 184–198. 10.1016/j.addr.2007.08.041. PubMed DOI PMC

Hoang Thi T. T.; Pilkington E. H.; Nguyen D. H.; Lee J. S.; Park K. D.; Truong N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12, 298. 10.3390/polym12020298. PubMed DOI PMC

Tsai W.B.; Ahmed I.N., The Impact of Polyethylene Glycol-Modified Chitosan Scaffolds on the Proliferation and Differentiation of Osteoblasts, Int. J. Biomater 2023 (2023). DOI: 1. 10.1155/2023/4864492. PubMed DOI PMC

Hiromoto S.; Doi K. Effect of polyethylene glycol modification on the corrosion behavior of hydroxyapatite-coated AZ31 Mg alloy under tensile deformation. Corros. Sci. 2023, 212, 110931 10.1016/j.corsci.2022.110931. DOI

Ahirwar H.; Zhou Y.; Mahapatra C.; Ramakrishna S.; Kumar P.; Nanda H.S., Materials for orthopedic bioimplants: Modulating degradation and surface modification using integrated nanomaterials, Coatings 10 (2020). DOI: 264. 10.3390/coatings10030264. DOI

Gallo J.; Holinka M.; Moucha C. Antibacterial Surface Treatment for Orthopaedic Implants. Int. J. Mol. Sci. 2014, 15, 13849–13880. 10.3390/ijms150813849. PubMed DOI PMC

Roy A.; Jhunjhunwala S.; Bayer E.; Fedorchak M.; Little S. R.; Kumta P. N. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system. Materials Science and Engineering C 2016, 59, 92–101. 10.1016/j.msec.2015.09.081. PubMed DOI

Li Q.; Jiang G.; Wang D.; Wang H.; Ding L.; He G. Porous magnesium loaded with gentamicin sulphate and in vitro release behavior. Materials Science and Engineering C 2016, 69, 154–159. 10.1016/j.msec.2016.06.074. PubMed DOI

Aggarwal D.; Kumar V.; Sharma S. Drug-loaded biomaterials for orthopedic applications: A review. J. Controlled Release 2022, 344, 113–133. 10.1016/j.jconrel.2022.02.029. PubMed DOI

Shahid A.; Aslam B.; Muzammil S.; Aslam N.; Shahid M.; Almatroudi A.; Allemailem K. S.; Saqalein M.; Nisar M. A.; Rasool M. H.; Khurshid M. The prospects of antimicrobial coated medical implants. J. Appl. Biomater. Funct. Mater. 2021, 19, 22808000211040304 10.1177/22808000211040304. PubMed DOI

Channasanon S.; Udomkusonsri P.; Chantaweroad S.; Tesavibul P.; Tanodekaew S. Gentamicin Released from Porous Scaffolds Fabricated by Stereolithography. J. Healthc Eng. 2017, 2017, 1–8. 10.1155/2017/9547896. PubMed DOI PMC

Chouirfa H.; Bouloussa H.; Migonney V.; Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 2019, 83, 37–54. 10.1016/j.actbio.2018.10.036. PubMed DOI

Nichol T.; Callaghan J.; Townsend R.; Stockley I.; Hatton P. V.; Le Maitre C.; Smith T. J.; Akid R. The antimicrobial activity and biocompatibility of a controlled gentamicin-releasing single-layer sol-gel coating on hydroxyapatite-coated titanium. Bone Joint J. 2021, 103-B, 522–529. 10.1302/0301-620X.103B3.BJJ-2020-0347.R1. PubMed DOI PMC

Kan Y. C.; Guo R.; Xu Y.; Han L. Y.; Bu W. H.; Han L. X.; Chu J. J. Investigating the in vitro antibacterial efficacy of composite bone cement incorporating natural product-based monomers and gentamicin. J. Orthop. Surg. Res. 2024, 19, 169. 10.1186/s13018-024-04646-7. PubMed DOI PMC

Antoci V.; Adams C. S.; Hickok N. J.; Shapiro I. M.; Parvizi J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res. 2007, 462, 200–206. 10.1097/BLO.0b013e31811ff866. PubMed DOI

Xie Z.; Cui X.; Zhao C.; Huang W.; Wang J.; Zhang C. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model. Antimicrob. Agents Chemother. 2013, 57, 3293–3298. 10.1128/AAC.00284-13. PubMed DOI PMC

Schneider C. A.; Rasband W. S.; Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. 10.1038/nmeth.2089. PubMed DOI PMC

Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, 2009. www.astm.org,.

ASTM G31-72. ASTM G31: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, 2004.

ISO-10993-5 . Biological evaluation of medical devices—part 5 tests for cytotoxicity: in vitro methods; ANSI/AAMI: Arlington, 2009; pp 1–34.

Fu X.; Kong W.; Zhang Y.; Jiang L.; Wang J.; Lei J. Novel solid-solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015, 5, 68881–68889. 10.1039/C5RA11842E. DOI

Batul R.; Bhave M.; Mahon P. J.; Yu A. Polydopamine nanosphere with in-situ loaded gentamicin and its antimicrobial activity. Molecules 2020, 25, 2090. 10.3390/molecules25092090. PubMed DOI PMC

Francis L.; Meng D.; Knowles J.; Keshavarz T.; Boccaccini A. R.; Roy I. Controlled delivery of gentamicin using poly(3-hydroxybutyrate) microspheres. Int. J. Mol. Sci. 2011, 12, 4294–4314. 10.3390/ijms12074294. PubMed DOI PMC

Naraharisetti P. K.; Ning Lew M. D.; Fu Y. C.; Lee D. J.; Wang C. H. Gentamicin-loaded discs and microspheres and their modifications: Characterization and in vitro release. J. Controlled Release 2005, 102, 345–359. 10.1016/j.jconrel.2004.10.016. PubMed DOI

Kawai F.Biodegradation of Polyethers (Polyethylene Glycol, Polypropylene Glycol, Polytetramethylene glycol, and Others). In Matsumura S.; Steinbüchel A., Eds.; Biopolymers Online; Wiley, 2001.

Haverová L.; Oriňaková R.; Oriňak A.; Gorejová R.; Baláž M.; Vanýsek P.; Kupková M.; Hrubovčáková M.; Mudroň P.; Radoňák J.; Králová Z. O.; Turoňová A. M. An in vitro corrosion study of open cell Iron structures with PEG coating for bone replacement applications. Metals 2018, 8, 499. 10.3390/met8070499. DOI

Karahan H. Effect of current density on the corrosion protection performance of polyaniline coated AISI 4140 steel. Transactions of the Institute of Metal Finishing 2019, 97, 48–52. 10.1080/00202967.2019.1551516. DOI

Oriňaková R.; Gorejová R.; Orságová Králová Z.; Haverová L.; Oriňak A.; Maskal’ová I.; Kupková M.; Džupon M.; Baláž M.; Hrubovčáková M.; Sopčák T.; Zubrik A.; Oriňak M. Evaluation of mechanical properties and hemocompatibility of open cell iron foams with polyethylene glycol coating. Appl. Surf. Sci. 2020, 505, 144634 10.1016/j.apsusc.2019.144634. DOI

Oriňaková R.; Gorejová R.; Petráková M.; Králová Z. O.; Oriňak A.; Kupková M.; Hrubovčáková M.; Podobová M.; Baláž M.; Smith R. M. Degradation performance of open-cell biomaterials from phosphated carbonyl iron powder with PEG coating. Materials 2020, 13, 4134. 10.3390/ma13184134. PubMed DOI PMC

Fan L.; Sun W.; Zou Y.; Qian Xu Q.; Zeng R. C.; Tian J. Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies. J. Mater. Sci. Technol. 2022, 111, 167–180. 10.1016/j.jmst.2021.08.089. DOI

Zhang Z. Q.; Wang L.; Zeng M. Q.; Zeng R. C.; Lin C. G.; Wang Z. L.; Chen D. C.; Zhang Q. Corrosion resistance and superhydrophobicity of one-step polypropylene coating on anodized AZ31 Mg alloy. Journal of Magnesium and Alloys 2021, 9, 1443–1457. 10.1016/j.jma.2020.06.011. DOI

Yang Y.; Fan M.; Zhao F. Degradation behavior, cytotoxicity, hemolysis of partially unzipped carbon nanotubes/zinc composites as potential biodegradable bone implants. Biomedical Materials 2023, 18, 045016 10.1088/1748-605X/acd49b. PubMed DOI

Zeller-Plumhoff B.; Helmholz H.; Feyerabend F.; Dose T.; Wilde F.; Hipp A.; Beckmann F.; Willumeit-Römer R.; Hammel J. U. Technical note on the determination of degradation rates of biodegradable magnesium implants. Materials and Corrosion 2023, 74, 1116–1119. 10.1002/maco.202313751. DOI

Ranjan A.; Pothayee N.; Seleem M. N.; Tyler R. D.; Brenseke B.; Sriranganathan N.; Riffle J. S.; Kasimanickam R. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int. J. Nanomedicine 2009, 4, 289–297. 10.2147/IJN.S7137. PubMed DOI PMC

Katsikogianni M.; Missirlis Y. F.; Harris L.; Douglas J. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cell Mater. 2004, 8, 37–57. 10.22203/eCM.v008a05. PubMed DOI

Fan L.; Sun W.; Zou Y.; Qian Xu Q.; Zeng R. C.; Tian J. Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies. J. Mater. Sci. Technol. 2022, 111, 167–180. 10.1016/j.jmst.2021.08.089. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...