Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film

. 2019 ; 14 (3) : e0214066. [epub] 20190322

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30901347

Selenium nanoparticle modified surfaces attract increasing attention in the field of tissue engineering. Selenium exhibits strong anticancer, antibacterial and anti-inflammatory properties and it maintains relatively low off-target cytotoxicity. In our paper, we present the fabrication, characterization and cytocompatibility of titanium oxide (TiO2) nanotube surface decorated with various surface densities of chemically synthesized selenium nanoparticles. To evaluate antibacterial and anti-cancer properties of such nanostructured surface, gram negative bacteria E. coli, cancerous osteoblast like MG-63 cells and non-cancerous fibroblast NIH/3T3 were cultured on designed surfaces. Our results suggested that selenium nanoparticles improved antibacterial properties of titanium dioxide nanotubes and confirmed the anticancer activity towards MG-63 cells, with increasing surface density of nanoparticles. Further, the selenium decorated TiO2 nanotubes suggested deteriorating effect on the cell adhesion and viability of non-cancerous NIH/3T3 cells. Thus, we demonstrated that selenium nanoparticles decorated TiO2 nanotubes synthesized using sodium selenite and glutathione can be used to control bacterial infections and prevent the growth of cancerous cells. However, the higher surface density of nanoparticles adsorbed on the surface was found to be cytotoxic for non-cancerous NIH/3T3 cells and thus it might complicate the integration of biomaterial into the host tissue. Therefore, an optimal surface density of selenium nanoparticles must be found to effectively kill bacteria and cancer cells, while remaining favorable for normal cells.

Zobrazit více v PubMed

Lamers E, Horssen Rv, Riet Jt, Delft Fv, Luttge R, Walboomers XF, et al. The influence of nanoscale topographical cues on initial osteoblast morphology and migration. Eur Cells Mater. 2010;329–43. PubMed

Oh S, Daraio C, Chen L-H, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res, Part A. 2006;78A(1):97–103. PubMed

Kummer KM, Taylor E, Webster TJ. Biological applications of anodized TiO2 nanostructures: a review from orthopedic to stent applications. Nanosci Nanotechnol Lett. 2012;4(5):483–93.

Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007;7(6):1686–91. 10.1021/nl070678d PubMed DOI

Fohlerova Z, Mozalev A. Tuning the response of osteoblast-like cells to the porous-alumina-assisted mixed-oxide nano-mound arrays. Journal of biomedical materials research Part B, Applied biomaterials. 2018;106(5):1645–54. 10.1002/jbm.b.33971 PubMed DOI

Tam KH, Djurišić AB, Chan CMN, Xi YY, Tse CW, Leung YH, et al. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films. 2008;516(18):6167–74.

Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial Effects of Carbon Nanotubes: Size Does Matter! Langmuir. 2008;24(13):6409–13. 10.1021/la800951v PubMed DOI

Lan M-Y, Liu C-P, Huang H-H, Lee S-W. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS One. 2013;8(10):e75364 10.1371/journal.pone.0075364 PubMed DOI PMC

Brammer KS, Oh S, Cobb CJ, Bjursten LM, Heyde Hvd, Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009;5(8):3215–23. 10.1016/j.actbio.2009.05.008 PubMed DOI

Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci. 2009;54(3):397–425.

Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports. 2004;47(3):49–121.

Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30(6):315–22. 10.1016/j.tibtech.2012.02.005 PubMed DOI

Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28(21):3188–97. 10.1016/j.biomaterials.2007.03.020 PubMed DOI

Oh S, Brammer KS, Li YJ, Teng D, Engler AJ, Chien S, et al. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci. 2009;106(7):2130–5. 10.1073/pnas.0813200106 PubMed DOI PMC

Park J, Bauer S, Schmuki P, von der Mark K. Narrow Window in Nanoscale Dependent Activation of Endothelial Cell Growth and Differentiation on TiO2 Nanotube Surfaces. Nano Lett. 2009;9(9):3157–64. 10.1021/nl9013502 PubMed DOI

Bauer S, Park J, Faltenbacher J, Berger S, von der Mark K, Schmuki P. Size selective behavior of mesenchymal stem cells on ZrO 2 and TiO2 nanotube arrays. Integr Biol. 2009;1(8–9):525–32. PubMed

Zhang H, Sun Y, Tian A, Xue XX, Wang L, Alquhali A, et al. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomed. 2013;8:4379. PubMed PMC

Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28(32):4880–8. 10.1016/j.biomaterials.2007.07.037 PubMed DOI

Li J, Zhou H, Qian S, Liu Z, Feng J, Jin P, et al. Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application. Appl Phys Lett. 2014;104(26):261110.

Yang T, Qian S, Qiao Y, Liu X. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles. Colloids Surf, B. 2016;145:597–606. PubMed

Mei S, Wang H, Wang W, Tong L, Pan H, Ruan C, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials. 2014;35(14):4255–65. 10.1016/j.biomaterials.2014.02.005 PubMed DOI

Liu W, Su P, Chen S, Wang N, Ma Y, Liu Y, et al. Synthesis of TiO 2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale. 2014;6(15):9050–62. 10.1039/c4nr01531b PubMed DOI

Kumeria T, Mon H, Aw MS, Gulati K, Santos A, Griesser HJ, et al. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf, B. 2015;130:255–63. PubMed

Kim H-W, Koh Y-H, Li L-H, Lee S, Kim H-E. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials. 2004;25(13):2533–8. PubMed

Subramani K, Ahmed W. Chapter 7—Titanium Nanotubes as Carriers of Osteogenic Growth Factors and Antibacterial Drugs for Applications in Dental Implantology In: Subramani K, Ahmed W, editors. Emerging Nanotechnologies in Dentistry. Boston: William Andrew Publishing; 2012. p. 103–11.

Tapiero H, Townsend DM, Tew KD. The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother. 2003;57(3):134–44. PubMed PMC

El-Bayoumy K. The protective role of selenium on genetic damage and on cancer. Mutat Res, Fundam Mol Mech Mutagen. 2001;475(1):123–39. PubMed

Chen X, Cai K, Fang J, Lai M, Hou Y, Li J, et al. Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Colloids Surf, B. 2013;103:149–57. PubMed

Liu W, Golshan NH, Deng X, Hickey DJ, Zeimer K, Li H, et al. Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale. 2016;8(34):15783–94. 10.1039/c6nr04461a PubMed DOI

Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomed. 2011;6:1553. PubMed PMC

Tran PA, Webster TJ. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology. 2013;24(15):155101 10.1088/0957-4484/24/15/155101 PubMed DOI

Tran P, Webster TJ. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int J Nanomed. 2008;3(3):391. PubMed PMC

El-Ghazaly M, Fadel N, Rashed E, El-Batal A, Kenawy S. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can J Physiol Pharmacol. 2016;95(2):101–10. 10.1139/cjpp-2016-0183 PubMed DOI

Shurygina IA, Shurygin MG. Nanoparticles in Wound Healing and Regeneration Metal Nanoparticles in Pharma: Springer; 2017. p. 21–37.

Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 2015;29:235–41. 10.1016/j.jtemb.2014.07.020 PubMed DOI

Huang X, Chen X, Chen Q, Yu Q, Sun D, Liu J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 2016;30:397–407. 10.1016/j.actbio.2015.10.041 PubMed DOI

Forootanfar H, Adeli-Sardou M, Nikkhoo M, Mehrabani M, Amir-Heidari B, Shahverdi AR, et al. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol. 2014;28(1):75–9. 10.1016/j.jtemb.2013.07.005 PubMed DOI

Raafat D, Sahl HG. Chitosan and its antimicrobial potential–a critical literature survey. Microb Biotechnol. 2009;2(2):186–201. 10.1111/j.1751-7915.2008.00080.x PubMed DOI PMC

Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156–86. 10.3390/md13085156 PubMed DOI PMC

Přikrylová K, Drbohlavová J, Svatoš V, Gablech I, Kalina L, Pytlíček Z, et al. Fabrication of highly ordered short free-standing titania nanotubes. Monatsh Chem. 2016;147(5):943–9.

Tran PA, Webster TJ. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation. Int J Nanomed. 2013;8:2001–9. PubMed PMC

Stolzoff M, Wang S, Webster T, editors. Efficacy and mechanism of selenium nanoparticles as antibacterial agents. Front Bioeng Biotechnol Conference Abstract: 10th World Biomaterials Congress 103389/conf FBIOE; 2016.

Gallo J, Holinka M, Moucha CS. Antibacterial Surface Treatment for Orthopaedic Implants. Int J Mol Sci. 2014;15(8):13849–80. 10.3390/ijms150813849 PubMed DOI PMC

Tran PA, O’Brien-Simpson N, Reynolds EC, Pantarat N, Biswas DP, O’Connor AJ. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli. Nanotechnology. 2015;27(4):045101 10.1088/0957-4484/27/4/045101 PubMed DOI

Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012. PubMed PMC

Perinpanayagam H, Zaharias R, Stanford C, Brand R, Keller J, Schneider G. Early cell adhesion events differ between osteoporotic and non‐osteoporotic osteoblasts. J Orthop Res. 2001;19(6):993–1000. 10.1016/S0736-0266(01)00045-6 PubMed DOI

Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170(2):191–203. PubMed

Rayman MP. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc. 2005;64(4):527–42. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...