Modifications of Parylene by Microstructures and Selenium Nanoparticles: Evaluation of Bacterial and Mesenchymal Stem Cell Viability
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34926427
PubMed Central
PMC8678570
DOI
10.3389/fbioe.2021.782799
PII: 782799
Knihovny.cz E-resources
- Keywords
- antimicrobial, biocompatibility, micropillars, parylene-C, selenium nanoparticles,
- Publication type
- Journal Article MeSH
Parylene-based implants or coatings introduce surfaces suffering from bacteria colonization. Here, we synthesized polyvinylpyrrolidone-stabilized selenium nanoparticles (SeNPs) as the antibacterial agent, and various approaches are studied for their reproducible adsorption, and thus the modification of parylene-C-coated glass substrate. The nanoparticle deposition process is optimized in the nanoparticle concentration to obtain evenly distributed NPs on the flat parylene-C surface. Moreover, the array of parylene-C micropillars is fabricated by the plasma etching of parylene-C on a silicon wafer, and the surface is modified with SeNPs. All designed surfaces are tested against two bacterial pathogens, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The results show no antibacterial effect toward S. aureus, while some bacteriostatic effect is observed for E. coli on the flat and microstructured parylene. However, SeNPs did not enhance the antibacterial effect against both bacteria. Additionally, all designed surfaces show cytotoxic effects toward mesenchymal stem cells at high SeNP deposition. These results provide valuable information about the potential antibacterial treatment of widely used parylene-C in biomedicine.
Central European Institute of Technology Brno University of Technology Brno Czechia
Department of Biochemistry Faculty of Medicine Masaryk University Brno Czechia
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czechia
Institute of Environmental Technology VŠB Technical University of Ostrava Ostrava Czechia
See more in PubMed
Applerot G., Abu-Mukh R., Irzh A., Charmet J., Keppner H., Laux E., et al. (2010). Decorating Parylene-Coated Glass With ZnO Nanoparticles for Antibacterial Applications: A Comparative Study of Sonochemical, Microwave, and Microwave-Plasma Coating Routes. ACS Appl. Mater. Inter. 2, 1052–1059. 10.1021/am900825h PubMed DOI
Arya G., Sharma N., Mankamna R., Nimesh S. (2019). Microbial Nanobionics: Volume 2, Basic Research and Applications. Editor Prasad R. (Springer International Publishing; ), 89–119.
Azizi-Lalabadi M., Hashemi H., Feng J., Jafari S. M. (2020). Carbon Nanomaterials Against Pathogens; the Antimicrobial Activity of Carbon Nanotubes, Graphene/Graphene Oxide, Fullerenes, and Their Nanocomposites. Adv. Colloid Interf. Sci. 284, 102250. 10.1016/j.cis.2020.102250 PubMed DOI
Bi X., Crum B. P., Li W. (2014). Super Hydrophobic Parylene-C Produced by Consecutive O2 SF6 Plasma Treatment. J. Microelectromech. Syst. 23, 628–635. 10.1109/JMEMS.2013.2283634 DOI
Bilek O., Fialova T., Otahal A., Adam V., Smerkova K., Fohlerova Z. (2020). Antibacterial Activity of AgNPs-TiO2 Nanotubes: Influence of Different Nanoparticle Stabilizers. RSC Adv. 10, 44601–44610. 10.1039/D0RA07305A PubMed DOI PMC
Bilek O., Fohlerova Z., Hubalek J. (2019). Enhanced Antibacterial and Anticancer Properties of Se-NPs Decorated TiO2 Nanotube Film. PLoS ONE. 14, e0214066. 10.1371/journal.pone.0214066 PubMed DOI PMC
Chang T. Y. (2007). Cell and Protein Compatibility of Parylene-C Surfaces. Langmuir. 23, 11718. 10.1021/la7017049 PubMed DOI
Delivopoulos E., Ouberai M. M., Coffey P. D., Swann M. J., Shakesheff K. M., Welland M. E. (2015). Serum Protein Layers on Parylene-C and Silicon Oxide: Effect on Cell Adhesion. Colloids Surf. B: Biointerfaces. 126, 169–177. 10.1016/j.colsurfb.2014.12.020 PubMed DOI PMC
Epand R. M., Epand R. F. (2009). Lipid Domains in Bacterial Membranes and the Action of Antimicrobial Agents. Biochim. Biophys. Acta (Bba) - Biomembranes. 1788, 289–294. 10.1016/j.bbamem.2008.08.023 PubMed DOI
Filipović N., Ušjak D., Milenković M. T., Zheng K., Liverani L., Boccaccini A. R., et al. (2021). Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. Front. Bioeng. Biotechnol. 8, 624621. 10.3389/fbioe.2020.624621 PubMed DOI PMC
Filipović U., Dahmane R. G., Ghannouchi S., Zore A., Bohinc K. (2020). Bacterial Adhesion on Orthopedic Implants. Adv. Colloid Interf. Sci. 283, 102228. 10.1016/j.cis.2020.102228 PubMed DOI
Fohlerova Z., Kamnev K., Sepúlveda M., Pytlicek Z., Prasek J., Mozalev A. (2021). Nanostructured Zirconium‐Oxide Bioceramic Coatings Derived from the Anodized Al/Zr Metal Layers. Adv. Mater. Inter. 8, 2100256. 10.1002/admi.202100256 DOI
Fohlerova Z., Mozalev A. (2019). Anodic Formation and Biomedical Properties of Hafnium-Oxide Nanofilms. J. Mater. Chem. B. 7, 2300–2310. 10.1039/C8TB03180K PubMed DOI
Geoffrion L. D., Hesabizadeh T., Medina-Cruz D., Kusper M., Taylor P., Vernet-Crua A., et al. (2020). Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments. ACS Omega. 5, 2660–2669. 10.1021/acsomega.9b03172 PubMed DOI PMC
Gołda M., Brzychczy-Włoch M., Faryna M., Engvall K., Kotarba A. (2013). Oxygen Plasma Functionalization of Parylene C Coating for Implants Surface: Nanotopography and Active Sites for Drug Anchoring. Mater. Sci. Eng. C. 33, 4221–4227. 10.1016/j.msec.2013.06.014 PubMed DOI
Golda-Cepa M., Engvall K., Hakkarainen M., Kotarba A. (2020). Recent Progress on Parylene C Polymer for Biomedical Applications: A Review. Prog. Org. Coat. 140, 105493. 10.1016/j.porgcoat.2019.105493 DOI
Gottenbos B., Grijpma D. W., van der Mei H. C., Feijen J., Busscher H. J. (2001). Antimicrobial Effects of Positively Charged Surfaces on Adhering Gram-Positive and Gram-Negative Bacteria. J Antimicrob Chemother. 48, 7–13. 10.1093/jac/48.1.7 PubMed DOI
Grinberg O., Natan M., Lipovsky A., Varvak A., Keppner H., Gedanken A., et al. (2015). Antibiotic Nanoparticles Embedded into the Parylene C Layer as a New Method to Prevent Medical Device-Associated Infections. J. Mater. Chem. B. 3, 59–64. 10.1039/C4TB00934G PubMed DOI
Guerrero Correa M., Martínez F. B., Vidal C. P., Streitt C., Escrig J., de Dicastillo C. L. (2020). Antimicrobial Metal-Based Nanoparticles: a Review on Their Synthesis, Types and Antimicrobial Action. Beilstein J. Nanotechnol. 11, 1450–1469. 10.3762/bjnano.11.129 PubMed DOI PMC
Huang T., Holden J. A., Heath D. E., O'Brien-Simpson N. M., O'Connor A. J. (2019). Engineering Highly Effective Antimicrobial Selenium Nanoparticles Through Control of Particle Size. Nanoscale. 11, 14937–14951. 10.1039/C9NR04424H PubMed DOI
Huh A. J., Kwon Y. J. (2011). Nanoantibiotics": A New Paradigm for Treating Infectious Diseases Using Nanomaterials in the Antibiotics Resistant Era, J. Controlled Release. 156, 128, 145. 10.1016/j.jconrel.2011.07.002 PubMed DOI
Janaki A. C., Sailatha E., Gunasekaran S. (2015). Synthesis, Characteristics and Antimicrobial Activity of ZnO Nanoparticles. Spectrochimica Acta A: Mol. Biomol. Spectrosc. 144, 17–22. 10.1016/j.saa.2015.02.041 PubMed DOI
Kupka V., Vojtova L., Fohlerova Z., Jancar J. (2016). Solvent Free Synthesis and Structural Evaluation of Polyurethane Films Based on Poly(ethylene Glycol) and Poly(caprolactone). Express Polym. Lett. 10, 479–492. 10.3144/expresspolymlett.2016.46 DOI
Lee D. S., Kim S. J., Kwon E. B., Park C. W., Jun S. M., Choi B., et al. (2013). Comparison of In Vivo Biocompatibilities Between Parylene-C and Polydimethylsiloxane for Implantable Microelectronic Devices. Bull. Mater. Sci. 36, 1127–1132. 10.1007/s12034-013-0570-0 DOI
Li B., Ma J., Wang D., Liu X., Li H., Zhou L., et al. (2019). Self-Adjusting Antibacterial Properties of Ag-Incorporated Nanotubes on Micro-Nanostructured Ti Surfaces. Biomater. Sci. 7, 4075–4087. 10.1039/C9BM00862D PubMed DOI
Li Q., Chen T., Yang F., Liu J., Zheng W. (2010). Facile and Controllable One-step Fabrication of Selenium Nanoparticles Assisted by L-Cysteine. Mater. Lett. 64, 614–617. 10.1016/j.matlet.2009.12.019 DOI
Liu J., Liu J., Attarilar S., Wang C., Tamaddon M., Yang C., et al. (2020). Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front. Bioeng. Biotechnol. 8, 576969. 10.3389/fbioe.2020.576969 PubMed DOI PMC
Lowry G. V., Hill R. J., Harper S., Rawle A. F., Hendren C. O., Klaessig F., et al. (2016). Guidance to Improve the Scientific Value of Zeta-Potential Measurements in nanoEHS. Environ. Sci. Nano. 3, 953–965. 10.1039/C6EN00136J DOI
Marszalek T., Gazicki-Lipman M., Ulanski J. (2017). Parylene C as a Versatile Dielectric Material for Organic Field-Effect Transistors. Beilstein J. Nanotechnol. 8, 1532–1545. 10.3762/bjnano.8.155 PubMed DOI PMC
Menon S., Agarwal H., Rajeshkumar S., Jacquline Rosy P., Shanmugam V. K. (2020). Investigating the Antimicrobial Activities of the Biosynthesized Selenium Nanoparticles and its Statistical Analysis. BioNanoSci. 10, 122–135. 10.1007/s12668-019-00710-3 DOI
Nguyen T. H. D., Vardhanabhuti B., Lin M., Mustapha A. (2017). Antibacterial Properties of Selenium Nanoparticles and Their Toxicity to Caco-2 Cells. Food Control. 77, 17–24. 10.1016/j.foodcont.2017.01.018 DOI
Piktel E., Suprewicz Ł., Depciuch J., Chmielewska S., Skłodowski K., Daniluk T., et al. (2021). Varied-Shaped Gold Nanoparticles With Nanogram Killing Efficiency as Potential Antimicrobial Surface Coatings for the Medical Devices. Sci. Rep. 11, 12546. 10.1038/s41598-021-91847-3 PubMed DOI PMC
Qi L., Xu Z., Jiang X., Hu C., Zou X. (2004). Preparation And Antibacterial Activity Of Chitosan Nanoparticles. Carbohydr. Res. 339 (16), 2693–2700. 10.1016/j.carres.2004.09.007 PubMed DOI
Raheem N., Straus S. K. (2019). Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front. Microbiol. 10, 2866. 10.3389/fmicb.2019.02866 PubMed DOI PMC
Sharma S., Conrad J. C. (2014). Attachment from Flow of Escherichia coli Bacteria onto Silanized Glass Substrates. Langmuir. 30, 11147–11155. 10.1021/la502313y PubMed DOI
Solano-Umaña S., Vega-Baudrit J. R. (2017). Gold, Silver, Copper and Silicone Hybrid Nanostructure Cytotoxicity. Int. J. Scientific Res. 8 (2), 15478–15486. 10.24327/IJRSR DOI
Song J. S., Lee S., Jung S. H., Cha G. C., Mun M. S. (2009). Improved Biocompatibility of Parylene-C Films Prepared by Chemical Vapor Deposition and the Subsequent Plasma Treatment. J. Appl. Polym. Sci. 112, 3677–3685. 10.1002/app.29774 DOI
Staufert S., Gutzwiller P., Mushtaq F., Hierold C. (2018). Surface Nanostructuring of Ti6Al4 V Surfaces for Parylene-C Coatings With Ultradurable Adhesion. ACS Appl. Nano Mater. 1, 1586–1594. 10.1021/acsanm.8b00081 DOI
Tran P. A., Webster T. J. (2013). Antimicrobial Selenium Nanoparticle Coatings on Polymeric Medical Devices. Nanotechnology. 24, 155101. 10.1088/0957-4484/24/15/155101 PubMed DOI
Tu X., Wei J., Wang B., Tang Y., Shi J., Chen Y. (2017). Patterned Parylene C for Cell Adhesion, Spreading and Alignment Studies. Microelectronic Eng. 175, 56–60. 10.1016/j.mee.2017.01.013 DOI
Usman M. S., El Zowalaty M. E., Shameli K., Zainuddin N., Salama M., Ibrahim N. A. (2013). Synthesis, Characterization, and Antimicrobial Properties of Copper Nanoparticles. Int. J. Nanomedicine. 8, 4467–4479. 10.2147/IJN.S50837 PubMed DOI PMC
Vrandečić K., Ćosić J., Ilić J., Ravnjak B., Selmani A., Galić E., et al. (2020). Antifungal Activities of Silver and Selenium Nanoparticles Stabilized With Different Surface Coating Agents. Pest Manag. Sci. 76, 2021–2029. 10.1002/ps.5735 PubMed DOI
Youssef F., Farghaly U., Abd El-Baky R. M., Waly N. (2020). Comparative Study of Antibacterial Effects of Titanium Dioxide Nanoparticles Alone and in Combination With Antibiotics on MDR Pseudomonas aeruginosa Strains. Int. J. Nanomedicine. 15, 3393–3404. 10.2147/IJN.S246310 PubMed DOI PMC
Zeniieh D., Ledernez L., Urban G. (2014). Parylene-C as High Performance Encapsulation Material for Implantable Sensors. Proced. Eng. 87, 1398–1401. 10.1016/j.proeng.2014.11.704 DOI