Epidemiology and Classification of Mastitis

. 2020 Nov 26 ; 10 (12) : . [epub] 20201126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33255907

Grantová podpora
QK1910212 Ministerstvo Zemědělství
APVV-18-0121 Agentúra na Podporu Výskumu a Vývoja
KEGA 039SPU Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR

Farmers should focus on milk quality over quantity because milk that contains unsuitable components and/or antibiotic residues, or has a high somatic cell count, cannot be used in food production and thereby results in reduced milk yield. One of the main problems affecting the ultimate milk yield of dairy cows is mastitis. This disease is the most serious economic and health problem associated with dairy cow herds and is a major reason for excessive culling. Therefore, many studies have addressed this problem to further our understanding of the agents causing mastitis and their classification and virulence factors. This review summarizes the current knowledge regarding mastitis prevalence, the characteristics of its main causative agents, and the effects of mastitis on dairy production. The review also intends to provide guidance for future studies by examining external effects influencing dairy production in cows under field conditions.

Zobrazit více v PubMed

Lucy M.C. Reproduction loss in high-producing dairy cattle: Where will it end? J. Dairy Sci. 2001;84:1277–1293. doi: 10.3168/jds.S0022-0302(01)70158-0. PubMed DOI

De Vliegher S., Fox L.K., Piepers S., McDougall S., Barkema H.W. Invited review: Mastitis in dairy heifers: Nature of disease, potential impact, prevention and control. J. Dairy Sci. 2003;95:1025–1040. doi: 10.3168/jds.2010-4074. PubMed DOI

Ruegg P.L. Investigation of mastitis problems on farms. Vet. Clin. N. Am. Food Anim. Pract. 2003;19:47–73. doi: 10.1016/S0749-0720(02)00078-6. PubMed DOI

Halasa T., Huijps K., Østerås O., Hogeveen H. Economic effects of bovine mastitis management: A review. Vet. Quart. 2007;29:18–31. doi: 10.1080/01652176.2007.9695224. PubMed DOI

Jamali H., Barkema H.W., Jacques M., Levallée-Bourget E., Malouin F., Saini V., Stryhn H., Dufour S. Invited review: Incidence, risk factors, and effects on clinical mastitis reccurence in dairy cows. J. Dairy Sci. 2018;101:4729–4746. doi: 10.3168/jds.2017-13730. PubMed DOI

Stevens M., Piepers S., De Vliegher S. Mastitis prevention and control practices and mastitis treatment strategies associated with the consumption of (critically important) antimicrobials on dairy herds in Flanders, Belgium. J. Dairy Sci. 2016;99:2896–2903. doi: 10.3168/jds.2015-10496. PubMed DOI

Philpot W.N. Proceedings of the 42nd British Natl. Conc. in Stoneleigh. Annual Meeting; Houston, TX, USA: 2003. A backword glance—A forward look; pp. 144–155.

Ullah S. MSc (Hons.) Master’s Thesis. Department of Veterinary Clinical Medicine and Surgery, University of Agriculture; Faisalabad, Pakistan: 2004. Effect of Mastitis on Milk Composition in Buffaloes under Field Conditions.

Heikkilä A.M., Nousiainen J.I., Pyörälä S. Costs of clinical mastitis with special reference to premature culling. J. Dairy Sci. 2012;95:139–150. doi: 10.3168/jds.2011-4321. PubMed DOI

Bezman D., Lembierskiy-Kuzin L., Katz G., Merin U., Leitner G. Influence of intramammary infection of a single gland in dairy cows on the cow’s milk quality. J. Dairy Res. 2015;82:304–311. doi: 10.1017/S002202991500031X. PubMed DOI

Sánchez-Macías D., Morales-delaNuez A., Torres A., Hernández-Castellano L.E., Jiménez-Flores R., Cstro N., Argüello A. Effects of somatic cells to carpine milk on cheese quality. Int. Dairy. J. 2013;29:61–67. doi: 10.1016/j.idairyj.2012.10.010. DOI

Sánchez-Macías D., Hernández-Castellano L.E., Morales-delaNuez A., Herra-Chávez B., Argüello A., Castro N. Somatic cells: A potential tool to accelerate low-fat goat cheese ripening. Int. Dairy J. 2020;102:104598. doi: 10.1016/j.idairyj.2019.104598. DOI

Blum S., Heller E.D., Krifucks O., Sela S., Hammer-Muntz O., Leitner G. Identification of a bovine mastitis Escherichia coli subset. Vet. Microbiol. 2008;132:135–148. doi: 10.1016/j.vetmic.2008.05.012. PubMed DOI

Zouharova M., Rysanek D. Multiplex PCR and RPLA Identification of Staphylococcus aureus. Enterotoxigenic Strains from Bulk Tank Milk. Zoonoses Public Health. 2008;55:313–319. doi: 10.1111/j.1863-2378.2008.01134.x. PubMed DOI

Abdullah S.N., You K.Y., Hisham Khamis N., Chong C.Y. Modeling the Dielectric Properties of Cow’s Raw Milk under Vat Pasteurization. Prog. Electromagn. Res. 2019;84:157–166. doi: 10.2528/PIERM19052202. DOI

Jain N.C. Common mammary pathogens and factors in infection and mastitis. Symposium: Bovine Mastitis. J. Dairy Sci. 1979;62:128–134. doi: 10.3168/jds.S0022-0302(79)83214-2. PubMed DOI

Wellnitz O., Bruckmaier R.M. The innate immune response of the bovine mammary gland to bacterial infection. Vet. J. 2012;192:148–152. doi: 10.1016/j.tvjl.2011.09.013. PubMed DOI

Vakkamäki J., Taponen S., Heikkilä A.M., Pyörälä S. Bacteriological etiology and treatment of mastitis in Finnish dairy herds. Acta Vet. Scand. 2017;59:33. doi: 10.1186/s13028-017-0301-4. PubMed DOI PMC

Idriss S.E., Foltys V., Tančin V., Kirchnerová K., Zaujec K. Mastitis pathogens in milk of dairy cows in Slovakia. Slovak J. Anim. Sci. 2013;46:115–119.

Holko I., Tančin V., Vršková M., Tvarožková K. Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia. J. Dairy Res. 2019;86:436–439. doi: 10.1017/S0022029919000694. PubMed DOI

Smith K.L., Todhunter D.A., Schoenberger P.S. Symposium: Environmental effects on cow health and Performance. J. Dairy Sci. 1985;68:1531–1553. doi: 10.3168/jds.S0022-0302(85)80993-0. PubMed DOI

Zehner M.M., Farnsworth R.J., Appleman R.D., Larntz K., Springer J.A. Growth of Environmental Mastitis Pathogens in Various Bedding Materials. J. Dairy Sci. 1985;69:1932–1941. doi: 10.3168/jds.S0022-0302(86)80620-8. PubMed DOI

Klaas I.C., Zadoks R.N. An update of environmental mastitis: Challenging perceptions. Transbound Emerg. Dis. 2017;65:166–185. doi: 10.1111/tbed.12704. PubMed DOI

Jánosi S., Szigeti G., Rátz F., Laukó T., Kerényi J., Tenk M., Huszenicza G. Prothoteca zopfii mastitis in dairy herds under continental climatic conditions. Vet. Quart. 2001;23:80–83. doi: 10.1080/01652176.2001.9695087. PubMed DOI

Osumi T., Kishimoto Y., Kano R., Maruyama H., Onozaki M., Makimura K., Hasegawa A. Prothoteca zopfii genotypes isolated from cow barns and bovine mastitis in Japan. Vet. Microbiol. 2008;131:419–423. doi: 10.1016/j.vetmic.2008.04.012. PubMed DOI

Eberhart R.J. Coliform mastitis. Vet. Clin. N. Am. 1984;6:287–301. doi: 10.1016/S0196-9846(17)30023-X. PubMed DOI

Nemeth J., Muckle C.A., Gyles C.L. In vitro comparison of bovine mastitis and fecal Escherichia coli isolates. Vet. Microbiol. 1994;40:231–238. doi: 10.1016/0378-1135(94)90112-0. PubMed DOI

Jones G.M. Understanding the Basics of Mastitis. Virginia State University; Petersburg, VA, USA: 2006. pp. 1–7.

Tančin V., Kirchnerová K., Foltys V., Mačuhova L., Dančinová D. Microbial contamination and somatic cell count of bovine milk striped and after udder preparation for milking. Slovak J. Anim. Sci. 2006;39:214–217.

King J.S. Streptococcus uberis: A review of its role as a causative organism of bovine mastitis. II. Control of infection. Br. Vet. J. 1981;137:160. doi: 10.1016/S0007-1935(17)31733-5. PubMed DOI

Natzke R.P. Elements of mastitis control. J. Dairy Sci. 1981;64:1431. doi: 10.3168/jds.S0022-0302(81)82713-0. PubMed DOI

Sommerhäuser J., Kloppert B., Wolter W., Zschöck M., Sobiraj A., Failing K. The epidemiology of Staphylococcus aureus infections from subclinical mastitis in dairy cows during a control programme. Vet. Microbiol. 2003;96:91–102. doi: 10.1016/S0378-1135(03)00204-9. PubMed DOI

Sharif A., Umer M., Muhammad G. Mastitis control in dairy production. J. Agric. Soc. Sci. 2009;5:102–105.

Zigo F., Elečko J., Farkašová Z., Zigová M., Vasiľ M., Ondrašovičová S., Kudeělková L. Preventive methods in reduction of mastitis pathogens in dairy cows. J. Microbiol. Biotechnol. Food Sci. 2019;9:121–126. doi: 10.15414/jmbfs.2019.9.1.121-126. DOI

Petersson-Wolfe C.S., Mullarky I.K., Jones G.M. Staphylococcus aureus Mastitis: Cause, Detection, and Control. VA Coop. Ext. 2010;404:1–7.

Hillerton J.E., Bramley R.T., Staker R.T., McKinnon C.H. Patterns of intramammary infection and clinical mastitis over a 5-year period in a closely monitored herd applying mastitis control measures. J. Dairy Sci. 1995;62:39–50. doi: 10.1017/S0022029900033653. PubMed DOI

National Mastitis Council National Mastitis Council Recommended Mastitis Control Program. [(accessed on 8 May 2020)];2001 Available online: http://www.nmconline.org/wp-content/uploads/2016/08/RECOMMENDED-MASTITIS-CONTROL-PROGRAM-International.pdf.

Gruet P., Maincent P., Berhelot X., Kaltsatos V. Bovine mastitis and intramammary drug delivery: Review and perspectives. Adv. Drug Deliver. Rev. 2001;50:245–259. doi: 10.1016/S0169-409X(01)00160-0. PubMed DOI

Ruegg P. 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017;100:10381–10397. doi: 10.3168/jds.2017-13023. PubMed DOI

Khan M.Z., Khan A. Basic facts of mastitis in dairy animals: Review. Pak. Vet. J. 2006;26:204–208.

Tančin V., Uhrinčať M. The effect of somatic cell on milk yield and milk flow at quarter level. Vet. Zootec. 2014;66:69–72.

Shearer J.K., Harris B., Jr. Mastitis in Dairy Goats. Animal Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences; Gainesville, FL, USA: 2003. pp. 1–6.

Seegers H., Fourichon C., Beaudeau F. Review article: Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003;34:475–491. doi: 10.1051/vetres:2003027. PubMed DOI

Peeler E.J., Green M.J., Fitzpatrick J.L., Green L.E. Study of clinical mastitis in British dairy herds with bulk milk somatic cell count less than 150,000 cells/ml. Vet. Rec. 2002;10:170–176. doi: 10.1136/vr.151.6.170. PubMed DOI

Barkema H.W., von Keyserlingk M.A., Kastelic J.P., Lam T.J., Luby C., Roy J.P., Kelton D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015;98:7426–7445. doi: 10.3168/jds.2015-9377. PubMed DOI

Ndahetuye J.B., Persson Y., Nyman A., Tukei M., Ongol M.P., Båge R. Aetiology and prevalence of subclinical mastitis in dairy herds in pre-urban areas of Kigali in Rwanda. Trop. Anim. Health Prod. 2019;51:2037–2044. doi: 10.1007/s11250-019-01905-2. PubMed DOI PMC

Ganda E.K., Bisinotto R.S., Decter D.H., Bicalho R.C. Evaluation of an On-Farm Culture System (Accumast) for Fast Identification of Milk Pathogens Associated with Clinical Mastitis in Dairy Cows. PLoS ONE. 2016;11:e0155314. doi: 10.1371/journal.pone.0155314. PubMed DOI PMC

Asmare A.A., Kassa F. Incidence of dairy cow mastitis and associated risk factors in Sodo town and its surroundings, Wolaila zone, Ethiopia. Slovak J. Anim. Sci. 2017;50:77–89.

Heikkilä A.M., Liski E., Pyörälä S., Taponen S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018;101:9493–9504. doi: 10.3168/jds.2018-14824. PubMed DOI

Saidani M., Messadi L., Soudani A., Daaloul-Jedidi M., Châtre P., Ben Chehida F., Mamlouk A., Mahjoub W., Madec J.Y., Haenni M. Epidemiology, antimicrobial resistance, and extended-spectrum Beta-lactamase-producing enterobacteriaceae in clinical bovine mastitis in Tunisia. Microb. Drug Resist. 2018;24:1242–1248. doi: 10.1089/mdr.2018.0049. PubMed DOI

Zi C., Zeng D., Ling N., Dai J., Xue F., Jiang Y., Li B. An improved assay for rapid detection of viable Staphylococcus aureus cells by incorporating surfactant and PMA treatments in qPCR. BMC Microbiol. 2018;18:132. doi: 10.1186/s12866-018-1273-x. PubMed DOI PMC

Todhunter D.A., Smith K.L., Hogan J.S. Growth of Gram-negative bacteria in dry cow secretion. J. Dairy Sci. 1990;73:363–372. doi: 10.3168/jds.S0022-0302(90)78682-1. PubMed DOI

Fox L.K., Gay J.M. Contagious mastitis. Vet. Clin. N. Am. Food Anim. Pract. 1993;9:475–487. doi: 10.1016/S0749-0720(15)30615-0. PubMed DOI

Zadoks R.N., Middleton J.R., McDougall S., Katholm J., Schukken Y.H. Molekular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. 2011;164:357–372. doi: 10.1007/s10911-011-9236-y. PubMed DOI PMC

Burvenich C., van Merris V., Mehrzad J., Diez-Fraile A., Duchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 2003;34:521–564. doi: 10.1051/vetres:2003023. PubMed DOI

Menzies F.D., Bryson D.G., McCallion T., Matthews D.I. A study of mortality among suckler and dairy cows in Northern Ireland in 1992. Vet. Rec. 1995;137:531–536. doi: 10.1136/vr.137.21.531. PubMed DOI

Lehtolainen T. Ph.D. Thesis. Faculty of Veterinary Medicine, University of Helsinky; Helsinki, Finland: 2004. Escherichia Coli Mastitis: Bacterial Factors and Host Response.

Suriyasathaporn W., Heuer C., Noordhuizen-Stassen E.N., Schukken Y.H. Hyperketonaemia and the impairment of udder defence: A review. Vet. Res. 2000;31:397–412. doi: 10.1051/vetres:2000128. PubMed DOI

Leininger D.J., Roberson J.R., Elvinger F., Ward D., Akers R.M. Evaluation of frequent milkout for treatment of cows with experimentally induced Escherichia coli masitits. J. Am. Vet. Med. Assoc. 2003;222:63–66. doi: 10.2460/javma.2003.222.63. PubMed DOI

van Werven T., Noordhuizen-Stassen E.N., Daemen A.J.J.M., Schukken Y.H., Brand A., Burvenich C. Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors and their predictive capacity on the outcome of mastitis inducted in dairy cows with Escherichia coli. J. Dairy Sci. 1997;80:67–74. doi: 10.3168/jds.S0022-0302(97)75913-7. PubMed DOI

Schukken Y.H., Bennett G.J., Zurakowski M.J., Sharkey H.L., Rauch B.J., Thomas M.J., Ceglowski B., Saltman R.L., Belomestnykh N., Zadoks R.N. Randomized clinical trial to evaluate the efficacy of 5-day ceftiofur hydrochloride intramammary treatment on nonsevere gram-negative clinical mastitis. J. Dairy Sci. 2011;94:6203–6215. doi: 10.3168/jds.2011-4290. PubMed DOI

Kehrli M.E.J., Harp J.A. Immunity in the mammary gland. Vet. Clin. N. Am. Food Anim. Pract. 2001;17:495–516. doi: 10.1016/S0749-0720(15)30003-7. PubMed DOI

Hogan J., Smith K.L. Coliform mastitis. Vet. Res. 2002;34:507–519. doi: 10.1051/vetres:2003022. PubMed DOI

Dosogne H., Meyer E., Sturk A., van Loom J., Massaet-Leën A.M., Burvenich C. Effect of enrofloxacin treatment on plasma endotoxin during bovine Escherichia coli mastitis. Inflamm. Res. 2002;51:201–205. doi: 10.1007/PL00000293. PubMed DOI

Bradley A.J., Green M.J. A study of the incidence and significance of intramammary enterobacterial infections acquired during the dry period. J. Dairy Sci. 2000;83:1857–1965. doi: 10.3168/jds.S0022-0302(00)75072-7. PubMed DOI

Tančin V., Mikláš Š., Mačuhová L. A review: Possible physiological and environmental factors affecting milk production and udder health of dairy cows. Slov. J. Anim. Sci. 2018;51:32–40.

Ericsson Unnerstad H., Lindberg A., Persson Walker K., Ekman T., Artursson K., Nilsson-Ost M., Bengtsson B. Microbial aetiology of acute clinical mastitis and agent-specific risk factors. Vet. Microbiol. 2009;137:90–97. doi: 10.1016/j.vetmic.2008.12.005. PubMed DOI

Radostits O.M., Gay C.C., Hinchcliff K.W., Constable P.D. Veterinary medicine: A textbook of diseases of cattle, horses, sheep, pigs and goats. Can. Vet. J. 2007;10:673–762.

Ribeiro M.G., Motta R.G., Paes A.C., Allendorf S.D., Salerno T., Siqueira A.K., Fernandes M.C., Lara G.H.B. Communication: Peracute bovine mastitis caused by Klebsiella pneumoniae. Arq. Bras. Med. Vet. Zootec. 2008;60:485–488. doi: 10.1590/S0102-09352008000200031. DOI

Schukken Y.H., Chuff M., Moroni P., Gurjar A., Santisteban C., Welcome F., Zadoks R. The “other” gram-negative bacteria in mastitis: Klebsiella, Serratia, and more. Vet. Clin. N. Am. Food Anim. Pract. 2012;28:239–256. doi: 10.1016/j.cvfa.2012.04.001. PubMed DOI

Oliveira L., Hulland C., Ruegg P.L. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013;96:7538–7549. doi: 10.3168/jds.2012-6078. PubMed DOI

Wilson D.J., Gonzalez R.N., Case K.L., Garrison L.L., Grohn Y. Comparison of seven antibiotic treatments with no treatment for bacteriological efficacy against bovine mastitis pathogens. J. Dairy Sci. 1999;82:1664–1670. doi: 10.3168/jds.S0022-0302(99)75395-6. PubMed DOI

Hertl J.A., Schukken Y.H., Welcome F.L., Tauer L.W., Gröhn Y.T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 2014;97:1465–1480. doi: 10.3168/jds.2013-7266. PubMed DOI

Bannerman D.D., Paape M.J., Hare W.R., Hope J.C. Characterization of bovine innate immune response to intramammary infection with Klebsiella pneumoniae. J. Dairy Sci. 2014;87:2420–2432. doi: 10.3168/jds.S0022-0302(04)73365-2. PubMed DOI

Zadoks R.N., Gillespie B.E., Barkema H.W., Sampimon O.C., Oliver S.P., Schukken Y.H. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol. Infect. 2003;130:335–349. doi: 10.1017/S0950268802008221. PubMed DOI PMC

Davies P.L., Leigh J.A., Bradley A.J., Archer S.C., Emes R.D., Green M.J. Molecular epidemiology of Streptococcus uberis clinical mastitis in daily herds: Strain heterogeneity and transmission. J. Clin. Microbiol. 2016;54:68–74. doi: 10.1128/JCM.01583-15. PubMed DOI PMC

Cruz Colque J.I., Devriese L.A., Haesebrouck F. Streptococci and Enterococci associated with tonsils of cattle. Lett. Appl. Microbiol. 1993;16:72–74. doi: 10.1111/j.1472-765X.1993.tb00346.x. PubMed DOI

Lopez-Benavides M.G., Williamson J.H., Pullinger G.D., Lacy-Hubert S.J., Cursons R.T., Leigh J.A. Field observations on the variation of Streptococcus uberis populations in pasture-based dairy farm. J. Dairy Sci. 2007;90:5558–5566. doi: 10.3168/jds.2007-0194. PubMed DOI

Leach K.A., Archer S.C., Breen J.E., Green M.J., Ohnstad I.C., Tuer S., Bradley A.J. manure as cow bedding: Potential benefits and risky for UK dairy farms. Vet. J. 2015;206:123–130. doi: 10.1016/j.tvjl.2015.08.013. PubMed DOI PMC

Tassi R., McNeilly N., Fitzpatrick J.L., Fontaine M.C., Reddick D., Ramage C., Lutton M., Schukken Y.H., Zadoks R.N. Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J. Dairy Sci. 2013;96:5129–5145. doi: 10.3168/jds.2013-6741. PubMed DOI

Hughes J. Bedding Systems and Mastitis. Mastitis Conference in Stoneleigh. [(accessed on 14 May 2020)];1999 Available online: http://www.britishmastitisconference.org.uk/BMC1999papers/Hughes.pdf.

Bramley A.J., Dodd F.H. Reviews of the progress of dairy science: Mastitis control—Progress and prospects. J. Dairy Res. 1984;51:481–512. doi: 10.1017/S0022029900023797. PubMed DOI

Wilkinson A. To Seal or Not to Seal: Internal Teat Sealant Strategies. British National Mastitis Council Regional Meeting in Stoneleigh. [(accessed on 8 May 2020)];2003 :16–20. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.562.4544&rep=rep1&type=pdf.

Denis M., Parlane N.A., Lacy-Hulbert S.J., Summers E.L., Buddle B.M., Wedlock D.N. Bactericidal activity of macrophages against Streptococcus uberis is different in mammary gland secretions of lactating and drying off cows. Vet. Immunol. Immunopathol. 2006;114:111–120. doi: 10.1016/j.vetimm.2006.08.001. PubMed DOI

Samson O., Gaudout N., Schmitt E., Schukken Y.H., Zadoks R. Use of on-farm data to guide treatment and control mastitis caused by Streptococcus uberis. J. Dairy Sci. 2016;99:7690–7699. doi: 10.3168/jds.2016-10964. PubMed DOI

Milne M.H., Biggs A.M., Barrett D.C., Young F.J., Doherty S., Innocent G.T., Fitzpatrick J.L. Treatment of perzistent intramammary infections with Streptococcus uberis in dairy cows. Vet. Rec. 2005;157:245–250. doi: 10.1136/vr.157.9.245. PubMed DOI

Pyörälä S. Treatment of mastitis during lactation. Ir. Vet. J. 2009;62:40–44. doi: 10.1186/2046-0481-62-S4-S40. PubMed DOI PMC

Todhunter D.A., Smith K.L., Hogan J.S. Environmental streptococcal intramammary infections of the bovine mammary gland. J. Dairy Sci. 1995;78:2366–2374. doi: 10.3168/jds.S0022-0302(95)76864-3. PubMed DOI

McDougall S., Parkinson T.J., Leyland M., Anniss F.M., Fenwick S.G. Duration of infection and strain variation in Streptococcus uberis isolated from cows’ milk. J. Dairy Sci. 2004;87:2062–2072. doi: 10.3168/jds.S0022-0302(04)70024-7. PubMed DOI

Lam T.J.G.M. Ph.D. Thesis. Utrecht University; Utrecht, The Netherlands: 1996. Dynamics of Bovine Mastitis: A Field Study in Low Somatic Cell Count Herds.

Watt C.J. Ph.D. Thesis. University of Oxford; Oxford, UK: 1999. The Epidemiology of Intramammary Infection in Dairy Cows, with Particular Reference to Streptococcus Uberis.

Zadoks R.N., Allore H.G., Barkema H.W., Sampion O.C., Wellenberg G.J., Gröhn Y.T., Schukken Y.H. Cow-and quarter-level risk factors of Streptococcus uberis and Staphylococcus aureus mastitis. J. Dairy Sci. 2001;84:2649–2663. doi: 10.3168/jds.S0022-0302(01)74719-4. PubMed DOI

Lyhs U., Kulkas L., Katholm J., Waller K.P., Saha K., Tomusk R.J., Zadoks R.N. Streptococcus agalactiae serotype IV in humans and cattle, northen Europe. Emerg. Infect. Dis. 2016;22:2097–2103. doi: 10.3201/eid2212.151447. PubMed DOI PMC

Martinez G., Harel J., Higgins R., Lacouture S., Daignault D., Gottschalk M. Characterization of Streptococcus agalactiae isolates of bovine and human origin by randomly amplified polymorphic DNA analysis. J. Clin. Microbiol. 2000;30:71–78. PubMed PMC

Jensen N.E. Experimenal bovine group-B streptococcal mastitis induced by strains of human and bovine origin. Nord. Vet. Med. 1982;34:441–450. PubMed

Goli M., Ezzatpanah H., Ghavami M., Chamani M., Doosti A. Prevalence assessment of Staphylococcus aureus and Streptococcus agalactiae by multiplex polymerase chain reaction (M-PCR) in bovine sub-clinical mastitis and their effect on somatic cell count (SCC) in Iran dairy cows. Afr. J. Microbiol. Res. 2012;6:3005–3010.

Merl K., Abdulmawjood A., Lämmler C., Zschöck M. Determination of epidemiological relationships of Streptococcus agalactiae isolated from bovine mastitis. FEMS Microbiol. Lett. 2003;223:87–92. doi: 10.1016/S0378-1097(03)00564-0. PubMed DOI

Sandy C. Milk Quality Pays: Streptococcus agalactiae Mastitis. A review. Vet. J. 2011;187:1–5.

Tolla T. Ph.D. Thesis. Addis Ababa University, Faculty of Veterinary Medicine; Debre Zeit, Ethiopia: 1996. Bovine Mastitis in Indigenous Zebu and Borona Holstein Crosses in Southern Wollo.

Kassa F., Ayano A.A., Abera M., Kiros A. Longitudinal study of bovine mastitis in Hawassa and Wendo Genet Small Holder Dairy farms. Glob. J. Sci. Frontier Res. 2014;14:33–41.

Lakew B.T., Fayera T., Ali Y.M. Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia. Trop. Anim. Health Prod. 2019;51:1507–1513. doi: 10.1007/s11250-019-01838-w. PubMed DOI PMC

Tomazi T., de Souza Filho A.F., Heinemann M.B., dos Santos M.V. Molecular characterization and antimicrobial susceptibility pattern of Streptococcus agalactiae isolated from clinical mastitis in dairy cattle. PLoS ONE. 2018;13:e0199561. doi: 10.1371/journal.pone.0199561. PubMed DOI PMC

Edmonson P. Blitz therapy for eradication of Streptococcus agalactiae infections in dairy cattle. Practice. 2011;33:33–37. doi: 10.1136/inp.c7449. DOI

Mullarky I.K., Su C., Frieze N., Park Y.H., Sordillo L.M. Staphylococcus aureus agr genotypes with enterotoxin production capabilities can resist neutrophil bactericidal activity. Infect. Immun. 2001;69:45–51. doi: 10.1128/IAI.69.1.45-51.2001. PubMed DOI PMC

Lammers A. Ph.D. Thesis. Utrecht University; Utrecht, The Netherlands: 2000. Pathogenesis of Staphylococcus Aureus Mastitis. In Vitro Studies on Adhesion, Invasion and Gene Expression.

Erskine R.J., Wagner S.A., De Graves F.J. Mastitis therapy and pharmacology. Vet. Clin. N. Am. Food Anim. Pract. 2003;19:109–138. doi: 10.1016/S0749-0720(02)00067-1. PubMed DOI

Zhao X., Lacasse P. Mammary tissue damage during bovine mastitis: Causes and control. J. Dairy Sci. 2008;86:57–65. doi: 10.2527/jas.2007-0302. PubMed DOI

Trinidad P., Nickerson S.C., Alley T.K. Prevalence of intramammary infection and teat canal colonization in unbred and primigravid dairy heifers. J. Dairy Sci. 1990;73:107–114. doi: 10.3168/jds.S0022-0302(90)78652-3. PubMed DOI

Tenhagen B.A., Hansen I., Reinecke A., Heuwieser W. Prevalence of pathogens in milk samples of dairy cows with clinical mastitis and in heifers at first parturition. J. Dairy Sci. 2009;73:639–647. doi: 10.1017/S0022029908003786. PubMed DOI

Barkema H.W., Schukken Y.H., Zadoks R.N. Invited review: The role of cow, pathogen and treatment regimen in therapeutic success of bovine Staphylococcus aureus mastitis. J. Dairy Sci. 2006;89:1877–1895. doi: 10.3168/jds.S0022-0302(06)72256-1. PubMed DOI

De Oliviera A.P., Watts J.L., Salmon S.L., Aarestrup F.M. Antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Europe and the United States. J. Dairy Sci. 2000;83:855–862. doi: 10.3168/jds.S0022-0302(00)74949-6. PubMed DOI

Erskine R.J., Walker R.D., Bolin C.A., Barlett P.C., White D.G. Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J. Dairy Sci. 2002;85:1111–1118. doi: 10.3168/jds.S0022-0302(02)74172-6. PubMed DOI

Makovec J.A., Ruegg P.L. Antimicrobial resistance of bacteria isolated from dairy cow milk sampes submitted for bacterial culture: 8905 samples (1994–2001) J. Am. Vet. Med. Assoc. 2003;222:1582–1589. doi: 10.2460/javma.2003.222.1582. PubMed DOI

Tenhagen B.A., Köster G., Wallmann J., Heuwieser W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J. Dairy Sci. 2006;89:2542–2551. doi: 10.3168/jds.S0022-0302(06)72330-X. PubMed DOI

Laevens H., Deluyker H., Schukken Y.H., De Meulemeester L., Vandermeersch R., De Muelenaere E., De Kruif A. Influence of parity and stage of lactation on the somatic cell count in bacteriologically negative dairy cows. J. Dairy Sci. 1997;80:3219–3226. doi: 10.3168/jds.S0022-0302(97)76295-7. PubMed DOI

Tančin V., Ipema A.H., Hogewerf P. Interaction of Somatic Cell Count and Quarter Milk Flow Patterns. J. Dairy Sci. 2007;90:2223–2228. doi: 10.3168/jds.2006-666. PubMed DOI

Reksen O., Sølverød L., Østerås O. Relationships between milk culture results and milk yield in Norwegian dairy cattle. J. Dairy Sci. 2007;90:4670–4678. doi: 10.3168/jds.2006-900. PubMed DOI

Schalm O.W., Carroll E.J., Jain N.C. Bovine Mastitis. Lea and Febiger; Philadelphia, PA, USA: 1971. p. 360.

Sampimon O.C., Zadoks R.N., De Vliegher S., Supré K., Haesebrouck F., Barkema H.W., Sol J., Lam T.J. Performance of API Staph ID 32 and Staph-Zym for identification of coagulase-negative staphylococci isolated from bovine milk samples. Vet. Microbiol. 2009;136:300–305. doi: 10.1016/j.vetmic.2008.11.004. PubMed DOI

Lundberg A., Nyman A., Unnerstad H.E., Waller K.P. Prevalence of bacterial genotypes and outcome of bovine clinical mastitis due to Streptococcus dysgalactiae and Streptococcus uberis. Acta Vet. Scand. 2014;56:80. doi: 10.1186/s13028-014-0080-0. PubMed DOI PMC

Rantamäki L.K., Müller H.-P. Phenotypic characterization of Streptococcus dysgalactiae isolates from bovine mastitis by their binding to host derived proteins. Vet. Microbiol. 1995;46:415–426. doi: 10.1016/0378-1135(95)00046-D. PubMed DOI

Yeruham I., Schimmer A., Brami Y. Epidemiological and bacteriological aspects of mastitis associated with yellow-jacket wasps (Vespula germanica) in dairy cattle herd. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2002;49:461–463. doi: 10.1046/j.1439-0450.2002.00487.x. PubMed DOI

Brubaker R.R. Mechanisms of bacterial virulence. Annu. Rev. Microbiol. 1985;39:21–50. doi: 10.1146/annurev.mi.39.100185.000321. PubMed DOI

Capuco A.V., Bright S.A., Pankey J.W., Wood D.L., Miller R.H., Bitman J. Increased susceptibility to intramammary infection following removal of teat canal keratin. J. Dairy Sci. 1992;75:2126–2130. doi: 10.3168/jds.S0022-0302(92)77972-7. PubMed DOI

Fernandes J.B.C., Zanardo L.G., Galvão N.N., Carvalho I.A., Nero L.A., Moreira M.A.S. Escherichia coli from clinical mastitis: Serotypes and virulence factors. J. Vet. Diagn. Investig. 2011;23:1146–1152. doi: 10.1177/1040638711425581. PubMed DOI

Bradley A.J., Breen J.E., Payne B., White V., Green M.J. An investigation of the efficacy of a polyvalent mastitis vaccine using different vaccination regimens under field conditions in the United Kingdom. J. Dairy Sci. 2015;98:1706–1720. doi: 10.3168/jds.2014-8332. PubMed DOI

Schwarz D., Duesterbeck U.S., Failing K., Köning S., Brügemann K., Zschöck M., Wolter W., Czerny C.P. Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany. J. Dairy Sci. 2010;92:5716–5728. doi: 10.3168/jds.2010-3223. PubMed DOI

Giraudo J.A., Calzolari A., Rampone H., Rampone A., Giraudo A.T., Bogni C., Larriestra A., Nagel R. Field trials of a vaccine against bovine mastitis. 1. Evaluation in heifers. J. Dairy Sci. 1997;80:845–853. doi: 10.3168/jds.S0022-0302(97)76006-5. PubMed DOI

Schukken Y.H., Günter J., Fitzpatrick J., Fontaine M.C., Goetze L., Holst O., Leigh J., Petzl W., Schuberth H.J., Sipka A., et al. Host-response patterns of intramammary infections in dairy cows. Vet. Immunol. Immunopathol. 2011;144:270–289. doi: 10.1016/j.vetimm.2011.08.022. PubMed DOI

Aitken S.L., Coel C.M., Sordillo L.M. Immunopathology of mastitis: Insights into disease recognition and resolution. J. Mammary Gland Biol. Neoplasia. 2011;16:291–304. doi: 10.1007/s10911-011-9230-4. PubMed DOI

Bannerman D.D. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci. 2009;87:10–25. doi: 10.2527/jas.2008-1187. PubMed DOI

Hernández-Castellano L., Wall S.K., Stephan R., Corti S., Bruckmaier R.M. Milk somatic cell count, lactate dehydrogenase activity, and immunoglobulin G concentration associated with mastitis caused by different pathogens: A field study. Schweizer Archiv Tierheilkunde. 2017;159:283–290. doi: 10.17236/sat00115. PubMed DOI

Sipka A.A., Gurjar A., Klaessig S., Duhamel G.E., Skidmore A., Swinkels J., Cox P., Schukken Y. Prednisolone and cefapirin act synergistically in resolving experimental Escherichia coli mastitis. J. Dairy Sci. 2013;95:4406–4418. doi: 10.3168/jds.2012-6455. PubMed DOI

Wall S.K., Hernández-Castellano E., Ahmadpour A., Bruckmaier R.M., Wellnitz O. Differential glucocorticoid-induced closure of the blood-milk barrier during lipopolysaccharide-and lipoteichoic acid-induced mastitis in dairy cows. J. Dairy Sci. 2016;99:7544–7553. doi: 10.3168/jds.2016-11093. PubMed DOI

Wall S.K., Wellnitz O., Hernández-Castellano L.E., Ahmadpour A., Bruckmaier R.M. Supraphysiological oxytocin increases the transfer of immunoglobulins and other blood components to milk during lipopolysaccharide and lipoteichoic acid-induced mastitis in dairy cows. J. Dairy. Sci. 2016;99:9165–9173. doi: 10.3168/jds.2016-11548. PubMed DOI

Grohn Y.T., Rajala-Schultz P.J., Allore H.G., Delorenzo M.A., Hertl J.A., Galligan D.T. Optimizing replacement of dairy cows: Modelling the effects of diseases. Prev. Vet. Med. 2003;61:27–43. doi: 10.1016/S0167-5877(03)00158-2. PubMed DOI

St. Rose S.G., Swinkels J.M., Kremer W.D.J., Kruitwagen C.L.J.J., Zadoks R.N. Effect of penethamate hydriodide treatment on bacteriological cure, somatic cell count and milk production of cows and quarters with chronic subclinical Streptococcus uberis or Streptococcus dysgalactiae infections. J. Dairy Res. 2003;70:387–394. doi: 10.1017/S0022029903006460. PubMed DOI

Berry E.A., Hogeveen H., Hillerton J.E. Decision tree analysis to evaluate dry cow strategies. J. Dairy Res. 2004;71:409–418. doi: 10.1017/S0022029904000433. PubMed DOI

Bar D., Tauer L.W., Bennet G., Gonzalez R.N., Hertl J.A., Schukken Y.H., Schulte H.F., Welcome F.L., Grohn Y.T. The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming. J. Dairy Sci. 2008;91:2205–2214. doi: 10.3168/jds.2007-0573. PubMed DOI

Cha E., Bar D., Hertl J.A., Tauer L.W., Bennett G., Gonzalez R.N., Schukken Y.H., Welcome F.L., Gröm Y.T. The cost and management of different types of clinical mastitis in dairy cows estimated by dynamic programming. J. Dairy Sci. 2011;94:4476–4487. doi: 10.3168/jds.2010-4123. PubMed DOI

Dahl M.O., De Vries A., Maunsell F.P., Galvao K.N., Risco C.A., Hernandez J.A. Epidemiologic and economic analyses of pregnancy loss attributable to mastitis in primiparous Holstein cows. J. Dairy Sci. 2018;101:10142–10150. doi: 10.3168/jds.2018-14619. PubMed DOI

Coulon J.B., Gasqui P., Barnouin J., Ollier A., Pradel P., Pomiès D. Effect of mastitis and related-germ on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim. Res. 2002;51:383–393. doi: 10.1051/animres:2002031. DOI

Halasa T., Nielen M., De Roos A.P.W., van Hoorne R., de Jong G., Lam T.J.G.M., van Werven T., Hogeveen H. Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. J. Dairy Sci. 2009;92:599–606. doi: 10.3168/jds.2008-1564. PubMed DOI

Gonçalves J.L., Tomazi T., Barreiro J.R., Beuron D.C., Arcari M.A., Lee S.H., Martins C.M.M.R., Araujo J.P., Jr., dos Santos M.V. Effects of bovine subclinical mastitis caused by Corynobacterium spp. On somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. 2016;209:87–92. doi: 10.1016/j.tvjl.2015.08.009. PubMed DOI

Bobbo T., Ruegg P.L., Stocco G., Fiore E., Gianesella M., Pasotto D., Bittante G., Cecchinato A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017;100:4868–4883. doi: 10.3168/jds.2016-12353. PubMed DOI

Gonçalves J.L., Kamphuis C., Martins C.M.M.R., Barreiro J.R., Tomazi T., Gameiro A.H., Hogeveen H., dos Santos M.V. Bovine subclinical mastitis reduces milk yield and economic return. Livest. Sci. 2018;210:25–32. doi: 10.1016/j.livsci.2018.01.016. DOI

Gussmann M., Steeneveld W., Kirkeby C., Hogeveen H., Nielen M., Farre M., Halasa T. Economic and epidemiological impact of different intervention strategies for clinical contagious mastitis. J. Dairy Sci. 2018;102:1483–1493. doi: 10.3168/jds.2018-14939. PubMed DOI

Hogeveen H., Huijps K., Lam T.J.G.M. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011;59:16–23. doi: 10.1080/00480169.2011.547165. PubMed DOI

McInerney J.P., Howe K.S., Schepers J.A. A Framework for economic analysis of disease in farm livestock. Prev. Vet. Med. 1992;13:137–154. doi: 10.1016/0167-5877(92)90098-Z. DOI

Yalcin C., Scott A.W., Logue D.N., Gunn J. The economic impact of mastitis-control procedures used in scottish dairy herds with high bulk-tank somatic-cell counts. Prev. Vet. Med. 1999;41:135–149. doi: 10.1016/S0167-5877(99)00052-5. PubMed DOI

Van Soest F.J.S., Santman-Berends I.M.G.A., Lam T.J.G.M., Hogeveen H. Failure and preventive costs of mastitis on Dutch dairy farms. J. Dairy Sci. 2016;99:8365–8374. doi: 10.3168/jds.2015-10561. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...