Epidemiology and Classification of Mastitis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
QK1910212
Ministerstvo Zemědělství
APVV-18-0121
Agentúra na Podporu Výskumu a Vývoja
KEGA 039SPU
Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR
PubMed
33255907
PubMed Central
PMC7760962
DOI
10.3390/ani10122212
PII: ani10122212
Knihovny.cz E-zdroje
- Klíčová slova
- causative agent, dairy production, mastitis, milk, somatic cell count,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Farmers should focus on milk quality over quantity because milk that contains unsuitable components and/or antibiotic residues, or has a high somatic cell count, cannot be used in food production and thereby results in reduced milk yield. One of the main problems affecting the ultimate milk yield of dairy cows is mastitis. This disease is the most serious economic and health problem associated with dairy cow herds and is a major reason for excessive culling. Therefore, many studies have addressed this problem to further our understanding of the agents causing mastitis and their classification and virulence factors. This review summarizes the current knowledge regarding mastitis prevalence, the characteristics of its main causative agents, and the effects of mastitis on dairy production. The review also intends to provide guidance for future studies by examining external effects influencing dairy production in cows under field conditions.
Zobrazit více v PubMed
Lucy M.C. Reproduction loss in high-producing dairy cattle: Where will it end? J. Dairy Sci. 2001;84:1277–1293. doi: 10.3168/jds.S0022-0302(01)70158-0. PubMed DOI
De Vliegher S., Fox L.K., Piepers S., McDougall S., Barkema H.W. Invited review: Mastitis in dairy heifers: Nature of disease, potential impact, prevention and control. J. Dairy Sci. 2003;95:1025–1040. doi: 10.3168/jds.2010-4074. PubMed DOI
Ruegg P.L. Investigation of mastitis problems on farms. Vet. Clin. N. Am. Food Anim. Pract. 2003;19:47–73. doi: 10.1016/S0749-0720(02)00078-6. PubMed DOI
Halasa T., Huijps K., Østerås O., Hogeveen H. Economic effects of bovine mastitis management: A review. Vet. Quart. 2007;29:18–31. doi: 10.1080/01652176.2007.9695224. PubMed DOI
Jamali H., Barkema H.W., Jacques M., Levallée-Bourget E., Malouin F., Saini V., Stryhn H., Dufour S. Invited review: Incidence, risk factors, and effects on clinical mastitis reccurence in dairy cows. J. Dairy Sci. 2018;101:4729–4746. doi: 10.3168/jds.2017-13730. PubMed DOI
Stevens M., Piepers S., De Vliegher S. Mastitis prevention and control practices and mastitis treatment strategies associated with the consumption of (critically important) antimicrobials on dairy herds in Flanders, Belgium. J. Dairy Sci. 2016;99:2896–2903. doi: 10.3168/jds.2015-10496. PubMed DOI
Philpot W.N. Proceedings of the 42nd British Natl. Conc. in Stoneleigh. Annual Meeting; Houston, TX, USA: 2003. A backword glance—A forward look; pp. 144–155.
Ullah S. MSc (Hons.) Master’s Thesis. Department of Veterinary Clinical Medicine and Surgery, University of Agriculture; Faisalabad, Pakistan: 2004. Effect of Mastitis on Milk Composition in Buffaloes under Field Conditions.
Heikkilä A.M., Nousiainen J.I., Pyörälä S. Costs of clinical mastitis with special reference to premature culling. J. Dairy Sci. 2012;95:139–150. doi: 10.3168/jds.2011-4321. PubMed DOI
Bezman D., Lembierskiy-Kuzin L., Katz G., Merin U., Leitner G. Influence of intramammary infection of a single gland in dairy cows on the cow’s milk quality. J. Dairy Res. 2015;82:304–311. doi: 10.1017/S002202991500031X. PubMed DOI
Sánchez-Macías D., Morales-delaNuez A., Torres A., Hernández-Castellano L.E., Jiménez-Flores R., Cstro N., Argüello A. Effects of somatic cells to carpine milk on cheese quality. Int. Dairy. J. 2013;29:61–67. doi: 10.1016/j.idairyj.2012.10.010. DOI
Sánchez-Macías D., Hernández-Castellano L.E., Morales-delaNuez A., Herra-Chávez B., Argüello A., Castro N. Somatic cells: A potential tool to accelerate low-fat goat cheese ripening. Int. Dairy J. 2020;102:104598. doi: 10.1016/j.idairyj.2019.104598. DOI
Blum S., Heller E.D., Krifucks O., Sela S., Hammer-Muntz O., Leitner G. Identification of a bovine mastitis Escherichia coli subset. Vet. Microbiol. 2008;132:135–148. doi: 10.1016/j.vetmic.2008.05.012. PubMed DOI
Zouharova M., Rysanek D. Multiplex PCR and RPLA Identification of Staphylococcus aureus. Enterotoxigenic Strains from Bulk Tank Milk. Zoonoses Public Health. 2008;55:313–319. doi: 10.1111/j.1863-2378.2008.01134.x. PubMed DOI
Abdullah S.N., You K.Y., Hisham Khamis N., Chong C.Y. Modeling the Dielectric Properties of Cow’s Raw Milk under Vat Pasteurization. Prog. Electromagn. Res. 2019;84:157–166. doi: 10.2528/PIERM19052202. DOI
Jain N.C. Common mammary pathogens and factors in infection and mastitis. Symposium: Bovine Mastitis. J. Dairy Sci. 1979;62:128–134. doi: 10.3168/jds.S0022-0302(79)83214-2. PubMed DOI
Wellnitz O., Bruckmaier R.M. The innate immune response of the bovine mammary gland to bacterial infection. Vet. J. 2012;192:148–152. doi: 10.1016/j.tvjl.2011.09.013. PubMed DOI
Vakkamäki J., Taponen S., Heikkilä A.M., Pyörälä S. Bacteriological etiology and treatment of mastitis in Finnish dairy herds. Acta Vet. Scand. 2017;59:33. doi: 10.1186/s13028-017-0301-4. PubMed DOI PMC
Idriss S.E., Foltys V., Tančin V., Kirchnerová K., Zaujec K. Mastitis pathogens in milk of dairy cows in Slovakia. Slovak J. Anim. Sci. 2013;46:115–119.
Holko I., Tančin V., Vršková M., Tvarožková K. Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia. J. Dairy Res. 2019;86:436–439. doi: 10.1017/S0022029919000694. PubMed DOI
Smith K.L., Todhunter D.A., Schoenberger P.S. Symposium: Environmental effects on cow health and Performance. J. Dairy Sci. 1985;68:1531–1553. doi: 10.3168/jds.S0022-0302(85)80993-0. PubMed DOI
Zehner M.M., Farnsworth R.J., Appleman R.D., Larntz K., Springer J.A. Growth of Environmental Mastitis Pathogens in Various Bedding Materials. J. Dairy Sci. 1985;69:1932–1941. doi: 10.3168/jds.S0022-0302(86)80620-8. PubMed DOI
Klaas I.C., Zadoks R.N. An update of environmental mastitis: Challenging perceptions. Transbound Emerg. Dis. 2017;65:166–185. doi: 10.1111/tbed.12704. PubMed DOI
Jánosi S., Szigeti G., Rátz F., Laukó T., Kerényi J., Tenk M., Huszenicza G. Prothoteca zopfii mastitis in dairy herds under continental climatic conditions. Vet. Quart. 2001;23:80–83. doi: 10.1080/01652176.2001.9695087. PubMed DOI
Osumi T., Kishimoto Y., Kano R., Maruyama H., Onozaki M., Makimura K., Hasegawa A. Prothoteca zopfii genotypes isolated from cow barns and bovine mastitis in Japan. Vet. Microbiol. 2008;131:419–423. doi: 10.1016/j.vetmic.2008.04.012. PubMed DOI
Eberhart R.J. Coliform mastitis. Vet. Clin. N. Am. 1984;6:287–301. doi: 10.1016/S0196-9846(17)30023-X. PubMed DOI
Nemeth J., Muckle C.A., Gyles C.L. In vitro comparison of bovine mastitis and fecal Escherichia coli isolates. Vet. Microbiol. 1994;40:231–238. doi: 10.1016/0378-1135(94)90112-0. PubMed DOI
Jones G.M. Understanding the Basics of Mastitis. Virginia State University; Petersburg, VA, USA: 2006. pp. 1–7.
Tančin V., Kirchnerová K., Foltys V., Mačuhova L., Dančinová D. Microbial contamination and somatic cell count of bovine milk striped and after udder preparation for milking. Slovak J. Anim. Sci. 2006;39:214–217.
King J.S. Streptococcus uberis: A review of its role as a causative organism of bovine mastitis. II. Control of infection. Br. Vet. J. 1981;137:160. doi: 10.1016/S0007-1935(17)31733-5. PubMed DOI
Natzke R.P. Elements of mastitis control. J. Dairy Sci. 1981;64:1431. doi: 10.3168/jds.S0022-0302(81)82713-0. PubMed DOI
Sommerhäuser J., Kloppert B., Wolter W., Zschöck M., Sobiraj A., Failing K. The epidemiology of Staphylococcus aureus infections from subclinical mastitis in dairy cows during a control programme. Vet. Microbiol. 2003;96:91–102. doi: 10.1016/S0378-1135(03)00204-9. PubMed DOI
Sharif A., Umer M., Muhammad G. Mastitis control in dairy production. J. Agric. Soc. Sci. 2009;5:102–105.
Zigo F., Elečko J., Farkašová Z., Zigová M., Vasiľ M., Ondrašovičová S., Kudeělková L. Preventive methods in reduction of mastitis pathogens in dairy cows. J. Microbiol. Biotechnol. Food Sci. 2019;9:121–126. doi: 10.15414/jmbfs.2019.9.1.121-126. DOI
Petersson-Wolfe C.S., Mullarky I.K., Jones G.M. Staphylococcus aureus Mastitis: Cause, Detection, and Control. VA Coop. Ext. 2010;404:1–7.
Hillerton J.E., Bramley R.T., Staker R.T., McKinnon C.H. Patterns of intramammary infection and clinical mastitis over a 5-year period in a closely monitored herd applying mastitis control measures. J. Dairy Sci. 1995;62:39–50. doi: 10.1017/S0022029900033653. PubMed DOI
National Mastitis Council National Mastitis Council Recommended Mastitis Control Program. [(accessed on 8 May 2020)];2001 Available online: http://www.nmconline.org/wp-content/uploads/2016/08/RECOMMENDED-MASTITIS-CONTROL-PROGRAM-International.pdf.
Gruet P., Maincent P., Berhelot X., Kaltsatos V. Bovine mastitis and intramammary drug delivery: Review and perspectives. Adv. Drug Deliver. Rev. 2001;50:245–259. doi: 10.1016/S0169-409X(01)00160-0. PubMed DOI
Ruegg P. 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017;100:10381–10397. doi: 10.3168/jds.2017-13023. PubMed DOI
Khan M.Z., Khan A. Basic facts of mastitis in dairy animals: Review. Pak. Vet. J. 2006;26:204–208.
Tančin V., Uhrinčať M. The effect of somatic cell on milk yield and milk flow at quarter level. Vet. Zootec. 2014;66:69–72.
Shearer J.K., Harris B., Jr. Mastitis in Dairy Goats. Animal Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences; Gainesville, FL, USA: 2003. pp. 1–6.
Seegers H., Fourichon C., Beaudeau F. Review article: Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003;34:475–491. doi: 10.1051/vetres:2003027. PubMed DOI
Peeler E.J., Green M.J., Fitzpatrick J.L., Green L.E. Study of clinical mastitis in British dairy herds with bulk milk somatic cell count less than 150,000 cells/ml. Vet. Rec. 2002;10:170–176. doi: 10.1136/vr.151.6.170. PubMed DOI
Barkema H.W., von Keyserlingk M.A., Kastelic J.P., Lam T.J., Luby C., Roy J.P., Kelton D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015;98:7426–7445. doi: 10.3168/jds.2015-9377. PubMed DOI
Ndahetuye J.B., Persson Y., Nyman A., Tukei M., Ongol M.P., Båge R. Aetiology and prevalence of subclinical mastitis in dairy herds in pre-urban areas of Kigali in Rwanda. Trop. Anim. Health Prod. 2019;51:2037–2044. doi: 10.1007/s11250-019-01905-2. PubMed DOI PMC
Ganda E.K., Bisinotto R.S., Decter D.H., Bicalho R.C. Evaluation of an On-Farm Culture System (Accumast) for Fast Identification of Milk Pathogens Associated with Clinical Mastitis in Dairy Cows. PLoS ONE. 2016;11:e0155314. doi: 10.1371/journal.pone.0155314. PubMed DOI PMC
Asmare A.A., Kassa F. Incidence of dairy cow mastitis and associated risk factors in Sodo town and its surroundings, Wolaila zone, Ethiopia. Slovak J. Anim. Sci. 2017;50:77–89.
Heikkilä A.M., Liski E., Pyörälä S., Taponen S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018;101:9493–9504. doi: 10.3168/jds.2018-14824. PubMed DOI
Saidani M., Messadi L., Soudani A., Daaloul-Jedidi M., Châtre P., Ben Chehida F., Mamlouk A., Mahjoub W., Madec J.Y., Haenni M. Epidemiology, antimicrobial resistance, and extended-spectrum Beta-lactamase-producing enterobacteriaceae in clinical bovine mastitis in Tunisia. Microb. Drug Resist. 2018;24:1242–1248. doi: 10.1089/mdr.2018.0049. PubMed DOI
Zi C., Zeng D., Ling N., Dai J., Xue F., Jiang Y., Li B. An improved assay for rapid detection of viable Staphylococcus aureus cells by incorporating surfactant and PMA treatments in qPCR. BMC Microbiol. 2018;18:132. doi: 10.1186/s12866-018-1273-x. PubMed DOI PMC
Todhunter D.A., Smith K.L., Hogan J.S. Growth of Gram-negative bacteria in dry cow secretion. J. Dairy Sci. 1990;73:363–372. doi: 10.3168/jds.S0022-0302(90)78682-1. PubMed DOI
Fox L.K., Gay J.M. Contagious mastitis. Vet. Clin. N. Am. Food Anim. Pract. 1993;9:475–487. doi: 10.1016/S0749-0720(15)30615-0. PubMed DOI
Zadoks R.N., Middleton J.R., McDougall S., Katholm J., Schukken Y.H. Molekular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. 2011;164:357–372. doi: 10.1007/s10911-011-9236-y. PubMed DOI PMC
Burvenich C., van Merris V., Mehrzad J., Diez-Fraile A., Duchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 2003;34:521–564. doi: 10.1051/vetres:2003023. PubMed DOI
Menzies F.D., Bryson D.G., McCallion T., Matthews D.I. A study of mortality among suckler and dairy cows in Northern Ireland in 1992. Vet. Rec. 1995;137:531–536. doi: 10.1136/vr.137.21.531. PubMed DOI
Lehtolainen T. Ph.D. Thesis. Faculty of Veterinary Medicine, University of Helsinky; Helsinki, Finland: 2004. Escherichia Coli Mastitis: Bacterial Factors and Host Response.
Suriyasathaporn W., Heuer C., Noordhuizen-Stassen E.N., Schukken Y.H. Hyperketonaemia and the impairment of udder defence: A review. Vet. Res. 2000;31:397–412. doi: 10.1051/vetres:2000128. PubMed DOI
Leininger D.J., Roberson J.R., Elvinger F., Ward D., Akers R.M. Evaluation of frequent milkout for treatment of cows with experimentally induced Escherichia coli masitits. J. Am. Vet. Med. Assoc. 2003;222:63–66. doi: 10.2460/javma.2003.222.63. PubMed DOI
van Werven T., Noordhuizen-Stassen E.N., Daemen A.J.J.M., Schukken Y.H., Brand A., Burvenich C. Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors and their predictive capacity on the outcome of mastitis inducted in dairy cows with Escherichia coli. J. Dairy Sci. 1997;80:67–74. doi: 10.3168/jds.S0022-0302(97)75913-7. PubMed DOI
Schukken Y.H., Bennett G.J., Zurakowski M.J., Sharkey H.L., Rauch B.J., Thomas M.J., Ceglowski B., Saltman R.L., Belomestnykh N., Zadoks R.N. Randomized clinical trial to evaluate the efficacy of 5-day ceftiofur hydrochloride intramammary treatment on nonsevere gram-negative clinical mastitis. J. Dairy Sci. 2011;94:6203–6215. doi: 10.3168/jds.2011-4290. PubMed DOI
Kehrli M.E.J., Harp J.A. Immunity in the mammary gland. Vet. Clin. N. Am. Food Anim. Pract. 2001;17:495–516. doi: 10.1016/S0749-0720(15)30003-7. PubMed DOI
Hogan J., Smith K.L. Coliform mastitis. Vet. Res. 2002;34:507–519. doi: 10.1051/vetres:2003022. PubMed DOI
Dosogne H., Meyer E., Sturk A., van Loom J., Massaet-Leën A.M., Burvenich C. Effect of enrofloxacin treatment on plasma endotoxin during bovine Escherichia coli mastitis. Inflamm. Res. 2002;51:201–205. doi: 10.1007/PL00000293. PubMed DOI
Bradley A.J., Green M.J. A study of the incidence and significance of intramammary enterobacterial infections acquired during the dry period. J. Dairy Sci. 2000;83:1857–1965. doi: 10.3168/jds.S0022-0302(00)75072-7. PubMed DOI
Tančin V., Mikláš Š., Mačuhová L. A review: Possible physiological and environmental factors affecting milk production and udder health of dairy cows. Slov. J. Anim. Sci. 2018;51:32–40.
Ericsson Unnerstad H., Lindberg A., Persson Walker K., Ekman T., Artursson K., Nilsson-Ost M., Bengtsson B. Microbial aetiology of acute clinical mastitis and agent-specific risk factors. Vet. Microbiol. 2009;137:90–97. doi: 10.1016/j.vetmic.2008.12.005. PubMed DOI
Radostits O.M., Gay C.C., Hinchcliff K.W., Constable P.D. Veterinary medicine: A textbook of diseases of cattle, horses, sheep, pigs and goats. Can. Vet. J. 2007;10:673–762.
Ribeiro M.G., Motta R.G., Paes A.C., Allendorf S.D., Salerno T., Siqueira A.K., Fernandes M.C., Lara G.H.B. Communication: Peracute bovine mastitis caused by Klebsiella pneumoniae. Arq. Bras. Med. Vet. Zootec. 2008;60:485–488. doi: 10.1590/S0102-09352008000200031. DOI
Schukken Y.H., Chuff M., Moroni P., Gurjar A., Santisteban C., Welcome F., Zadoks R. The “other” gram-negative bacteria in mastitis: Klebsiella, Serratia, and more. Vet. Clin. N. Am. Food Anim. Pract. 2012;28:239–256. doi: 10.1016/j.cvfa.2012.04.001. PubMed DOI
Oliveira L., Hulland C., Ruegg P.L. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013;96:7538–7549. doi: 10.3168/jds.2012-6078. PubMed DOI
Wilson D.J., Gonzalez R.N., Case K.L., Garrison L.L., Grohn Y. Comparison of seven antibiotic treatments with no treatment for bacteriological efficacy against bovine mastitis pathogens. J. Dairy Sci. 1999;82:1664–1670. doi: 10.3168/jds.S0022-0302(99)75395-6. PubMed DOI
Hertl J.A., Schukken Y.H., Welcome F.L., Tauer L.W., Gröhn Y.T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 2014;97:1465–1480. doi: 10.3168/jds.2013-7266. PubMed DOI
Bannerman D.D., Paape M.J., Hare W.R., Hope J.C. Characterization of bovine innate immune response to intramammary infection with Klebsiella pneumoniae. J. Dairy Sci. 2014;87:2420–2432. doi: 10.3168/jds.S0022-0302(04)73365-2. PubMed DOI
Zadoks R.N., Gillespie B.E., Barkema H.W., Sampimon O.C., Oliver S.P., Schukken Y.H. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol. Infect. 2003;130:335–349. doi: 10.1017/S0950268802008221. PubMed DOI PMC
Davies P.L., Leigh J.A., Bradley A.J., Archer S.C., Emes R.D., Green M.J. Molecular epidemiology of Streptococcus uberis clinical mastitis in daily herds: Strain heterogeneity and transmission. J. Clin. Microbiol. 2016;54:68–74. doi: 10.1128/JCM.01583-15. PubMed DOI PMC
Cruz Colque J.I., Devriese L.A., Haesebrouck F. Streptococci and Enterococci associated with tonsils of cattle. Lett. Appl. Microbiol. 1993;16:72–74. doi: 10.1111/j.1472-765X.1993.tb00346.x. PubMed DOI
Lopez-Benavides M.G., Williamson J.H., Pullinger G.D., Lacy-Hubert S.J., Cursons R.T., Leigh J.A. Field observations on the variation of Streptococcus uberis populations in pasture-based dairy farm. J. Dairy Sci. 2007;90:5558–5566. doi: 10.3168/jds.2007-0194. PubMed DOI
Leach K.A., Archer S.C., Breen J.E., Green M.J., Ohnstad I.C., Tuer S., Bradley A.J. manure as cow bedding: Potential benefits and risky for UK dairy farms. Vet. J. 2015;206:123–130. doi: 10.1016/j.tvjl.2015.08.013. PubMed DOI PMC
Tassi R., McNeilly N., Fitzpatrick J.L., Fontaine M.C., Reddick D., Ramage C., Lutton M., Schukken Y.H., Zadoks R.N. Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J. Dairy Sci. 2013;96:5129–5145. doi: 10.3168/jds.2013-6741. PubMed DOI
Hughes J. Bedding Systems and Mastitis. Mastitis Conference in Stoneleigh. [(accessed on 14 May 2020)];1999 Available online: http://www.britishmastitisconference.org.uk/BMC1999papers/Hughes.pdf.
Bramley A.J., Dodd F.H. Reviews of the progress of dairy science: Mastitis control—Progress and prospects. J. Dairy Res. 1984;51:481–512. doi: 10.1017/S0022029900023797. PubMed DOI
Wilkinson A. To Seal or Not to Seal: Internal Teat Sealant Strategies. British National Mastitis Council Regional Meeting in Stoneleigh. [(accessed on 8 May 2020)];2003 :16–20. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.562.4544&rep=rep1&type=pdf.
Denis M., Parlane N.A., Lacy-Hulbert S.J., Summers E.L., Buddle B.M., Wedlock D.N. Bactericidal activity of macrophages against Streptococcus uberis is different in mammary gland secretions of lactating and drying off cows. Vet. Immunol. Immunopathol. 2006;114:111–120. doi: 10.1016/j.vetimm.2006.08.001. PubMed DOI
Samson O., Gaudout N., Schmitt E., Schukken Y.H., Zadoks R. Use of on-farm data to guide treatment and control mastitis caused by Streptococcus uberis. J. Dairy Sci. 2016;99:7690–7699. doi: 10.3168/jds.2016-10964. PubMed DOI
Milne M.H., Biggs A.M., Barrett D.C., Young F.J., Doherty S., Innocent G.T., Fitzpatrick J.L. Treatment of perzistent intramammary infections with Streptococcus uberis in dairy cows. Vet. Rec. 2005;157:245–250. doi: 10.1136/vr.157.9.245. PubMed DOI
Pyörälä S. Treatment of mastitis during lactation. Ir. Vet. J. 2009;62:40–44. doi: 10.1186/2046-0481-62-S4-S40. PubMed DOI PMC
Todhunter D.A., Smith K.L., Hogan J.S. Environmental streptococcal intramammary infections of the bovine mammary gland. J. Dairy Sci. 1995;78:2366–2374. doi: 10.3168/jds.S0022-0302(95)76864-3. PubMed DOI
McDougall S., Parkinson T.J., Leyland M., Anniss F.M., Fenwick S.G. Duration of infection and strain variation in Streptococcus uberis isolated from cows’ milk. J. Dairy Sci. 2004;87:2062–2072. doi: 10.3168/jds.S0022-0302(04)70024-7. PubMed DOI
Lam T.J.G.M. Ph.D. Thesis. Utrecht University; Utrecht, The Netherlands: 1996. Dynamics of Bovine Mastitis: A Field Study in Low Somatic Cell Count Herds.
Watt C.J. Ph.D. Thesis. University of Oxford; Oxford, UK: 1999. The Epidemiology of Intramammary Infection in Dairy Cows, with Particular Reference to Streptococcus Uberis.
Zadoks R.N., Allore H.G., Barkema H.W., Sampion O.C., Wellenberg G.J., Gröhn Y.T., Schukken Y.H. Cow-and quarter-level risk factors of Streptococcus uberis and Staphylococcus aureus mastitis. J. Dairy Sci. 2001;84:2649–2663. doi: 10.3168/jds.S0022-0302(01)74719-4. PubMed DOI
Lyhs U., Kulkas L., Katholm J., Waller K.P., Saha K., Tomusk R.J., Zadoks R.N. Streptococcus agalactiae serotype IV in humans and cattle, northen Europe. Emerg. Infect. Dis. 2016;22:2097–2103. doi: 10.3201/eid2212.151447. PubMed DOI PMC
Martinez G., Harel J., Higgins R., Lacouture S., Daignault D., Gottschalk M. Characterization of Streptococcus agalactiae isolates of bovine and human origin by randomly amplified polymorphic DNA analysis. J. Clin. Microbiol. 2000;30:71–78. PubMed PMC
Jensen N.E. Experimenal bovine group-B streptococcal mastitis induced by strains of human and bovine origin. Nord. Vet. Med. 1982;34:441–450. PubMed
Goli M., Ezzatpanah H., Ghavami M., Chamani M., Doosti A. Prevalence assessment of Staphylococcus aureus and Streptococcus agalactiae by multiplex polymerase chain reaction (M-PCR) in bovine sub-clinical mastitis and their effect on somatic cell count (SCC) in Iran dairy cows. Afr. J. Microbiol. Res. 2012;6:3005–3010.
Merl K., Abdulmawjood A., Lämmler C., Zschöck M. Determination of epidemiological relationships of Streptococcus agalactiae isolated from bovine mastitis. FEMS Microbiol. Lett. 2003;223:87–92. doi: 10.1016/S0378-1097(03)00564-0. PubMed DOI
Sandy C. Milk Quality Pays: Streptococcus agalactiae Mastitis. A review. Vet. J. 2011;187:1–5.
Tolla T. Ph.D. Thesis. Addis Ababa University, Faculty of Veterinary Medicine; Debre Zeit, Ethiopia: 1996. Bovine Mastitis in Indigenous Zebu and Borona Holstein Crosses in Southern Wollo.
Kassa F., Ayano A.A., Abera M., Kiros A. Longitudinal study of bovine mastitis in Hawassa and Wendo Genet Small Holder Dairy farms. Glob. J. Sci. Frontier Res. 2014;14:33–41.
Lakew B.T., Fayera T., Ali Y.M. Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia. Trop. Anim. Health Prod. 2019;51:1507–1513. doi: 10.1007/s11250-019-01838-w. PubMed DOI PMC
Tomazi T., de Souza Filho A.F., Heinemann M.B., dos Santos M.V. Molecular characterization and antimicrobial susceptibility pattern of Streptococcus agalactiae isolated from clinical mastitis in dairy cattle. PLoS ONE. 2018;13:e0199561. doi: 10.1371/journal.pone.0199561. PubMed DOI PMC
Edmonson P. Blitz therapy for eradication of Streptococcus agalactiae infections in dairy cattle. Practice. 2011;33:33–37. doi: 10.1136/inp.c7449. DOI
Mullarky I.K., Su C., Frieze N., Park Y.H., Sordillo L.M. Staphylococcus aureus agr genotypes with enterotoxin production capabilities can resist neutrophil bactericidal activity. Infect. Immun. 2001;69:45–51. doi: 10.1128/IAI.69.1.45-51.2001. PubMed DOI PMC
Lammers A. Ph.D. Thesis. Utrecht University; Utrecht, The Netherlands: 2000. Pathogenesis of Staphylococcus Aureus Mastitis. In Vitro Studies on Adhesion, Invasion and Gene Expression.
Erskine R.J., Wagner S.A., De Graves F.J. Mastitis therapy and pharmacology. Vet. Clin. N. Am. Food Anim. Pract. 2003;19:109–138. doi: 10.1016/S0749-0720(02)00067-1. PubMed DOI
Zhao X., Lacasse P. Mammary tissue damage during bovine mastitis: Causes and control. J. Dairy Sci. 2008;86:57–65. doi: 10.2527/jas.2007-0302. PubMed DOI
Trinidad P., Nickerson S.C., Alley T.K. Prevalence of intramammary infection and teat canal colonization in unbred and primigravid dairy heifers. J. Dairy Sci. 1990;73:107–114. doi: 10.3168/jds.S0022-0302(90)78652-3. PubMed DOI
Tenhagen B.A., Hansen I., Reinecke A., Heuwieser W. Prevalence of pathogens in milk samples of dairy cows with clinical mastitis and in heifers at first parturition. J. Dairy Sci. 2009;73:639–647. doi: 10.1017/S0022029908003786. PubMed DOI
Barkema H.W., Schukken Y.H., Zadoks R.N. Invited review: The role of cow, pathogen and treatment regimen in therapeutic success of bovine Staphylococcus aureus mastitis. J. Dairy Sci. 2006;89:1877–1895. doi: 10.3168/jds.S0022-0302(06)72256-1. PubMed DOI
De Oliviera A.P., Watts J.L., Salmon S.L., Aarestrup F.M. Antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Europe and the United States. J. Dairy Sci. 2000;83:855–862. doi: 10.3168/jds.S0022-0302(00)74949-6. PubMed DOI
Erskine R.J., Walker R.D., Bolin C.A., Barlett P.C., White D.G. Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J. Dairy Sci. 2002;85:1111–1118. doi: 10.3168/jds.S0022-0302(02)74172-6. PubMed DOI
Makovec J.A., Ruegg P.L. Antimicrobial resistance of bacteria isolated from dairy cow milk sampes submitted for bacterial culture: 8905 samples (1994–2001) J. Am. Vet. Med. Assoc. 2003;222:1582–1589. doi: 10.2460/javma.2003.222.1582. PubMed DOI
Tenhagen B.A., Köster G., Wallmann J., Heuwieser W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J. Dairy Sci. 2006;89:2542–2551. doi: 10.3168/jds.S0022-0302(06)72330-X. PubMed DOI
Laevens H., Deluyker H., Schukken Y.H., De Meulemeester L., Vandermeersch R., De Muelenaere E., De Kruif A. Influence of parity and stage of lactation on the somatic cell count in bacteriologically negative dairy cows. J. Dairy Sci. 1997;80:3219–3226. doi: 10.3168/jds.S0022-0302(97)76295-7. PubMed DOI
Tančin V., Ipema A.H., Hogewerf P. Interaction of Somatic Cell Count and Quarter Milk Flow Patterns. J. Dairy Sci. 2007;90:2223–2228. doi: 10.3168/jds.2006-666. PubMed DOI
Reksen O., Sølverød L., Østerås O. Relationships between milk culture results and milk yield in Norwegian dairy cattle. J. Dairy Sci. 2007;90:4670–4678. doi: 10.3168/jds.2006-900. PubMed DOI
Schalm O.W., Carroll E.J., Jain N.C. Bovine Mastitis. Lea and Febiger; Philadelphia, PA, USA: 1971. p. 360.
Sampimon O.C., Zadoks R.N., De Vliegher S., Supré K., Haesebrouck F., Barkema H.W., Sol J., Lam T.J. Performance of API Staph ID 32 and Staph-Zym for identification of coagulase-negative staphylococci isolated from bovine milk samples. Vet. Microbiol. 2009;136:300–305. doi: 10.1016/j.vetmic.2008.11.004. PubMed DOI
Lundberg A., Nyman A., Unnerstad H.E., Waller K.P. Prevalence of bacterial genotypes and outcome of bovine clinical mastitis due to Streptococcus dysgalactiae and Streptococcus uberis. Acta Vet. Scand. 2014;56:80. doi: 10.1186/s13028-014-0080-0. PubMed DOI PMC
Rantamäki L.K., Müller H.-P. Phenotypic characterization of Streptococcus dysgalactiae isolates from bovine mastitis by their binding to host derived proteins. Vet. Microbiol. 1995;46:415–426. doi: 10.1016/0378-1135(95)00046-D. PubMed DOI
Yeruham I., Schimmer A., Brami Y. Epidemiological and bacteriological aspects of mastitis associated with yellow-jacket wasps (Vespula germanica) in dairy cattle herd. J. Vet. Med. B Infect. Dis. Vet. Public Health. 2002;49:461–463. doi: 10.1046/j.1439-0450.2002.00487.x. PubMed DOI
Brubaker R.R. Mechanisms of bacterial virulence. Annu. Rev. Microbiol. 1985;39:21–50. doi: 10.1146/annurev.mi.39.100185.000321. PubMed DOI
Capuco A.V., Bright S.A., Pankey J.W., Wood D.L., Miller R.H., Bitman J. Increased susceptibility to intramammary infection following removal of teat canal keratin. J. Dairy Sci. 1992;75:2126–2130. doi: 10.3168/jds.S0022-0302(92)77972-7. PubMed DOI
Fernandes J.B.C., Zanardo L.G., Galvão N.N., Carvalho I.A., Nero L.A., Moreira M.A.S. Escherichia coli from clinical mastitis: Serotypes and virulence factors. J. Vet. Diagn. Investig. 2011;23:1146–1152. doi: 10.1177/1040638711425581. PubMed DOI
Bradley A.J., Breen J.E., Payne B., White V., Green M.J. An investigation of the efficacy of a polyvalent mastitis vaccine using different vaccination regimens under field conditions in the United Kingdom. J. Dairy Sci. 2015;98:1706–1720. doi: 10.3168/jds.2014-8332. PubMed DOI
Schwarz D., Duesterbeck U.S., Failing K., Köning S., Brügemann K., Zschöck M., Wolter W., Czerny C.P. Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany. J. Dairy Sci. 2010;92:5716–5728. doi: 10.3168/jds.2010-3223. PubMed DOI
Giraudo J.A., Calzolari A., Rampone H., Rampone A., Giraudo A.T., Bogni C., Larriestra A., Nagel R. Field trials of a vaccine against bovine mastitis. 1. Evaluation in heifers. J. Dairy Sci. 1997;80:845–853. doi: 10.3168/jds.S0022-0302(97)76006-5. PubMed DOI
Schukken Y.H., Günter J., Fitzpatrick J., Fontaine M.C., Goetze L., Holst O., Leigh J., Petzl W., Schuberth H.J., Sipka A., et al. Host-response patterns of intramammary infections in dairy cows. Vet. Immunol. Immunopathol. 2011;144:270–289. doi: 10.1016/j.vetimm.2011.08.022. PubMed DOI
Aitken S.L., Coel C.M., Sordillo L.M. Immunopathology of mastitis: Insights into disease recognition and resolution. J. Mammary Gland Biol. Neoplasia. 2011;16:291–304. doi: 10.1007/s10911-011-9230-4. PubMed DOI
Bannerman D.D. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci. 2009;87:10–25. doi: 10.2527/jas.2008-1187. PubMed DOI
Hernández-Castellano L., Wall S.K., Stephan R., Corti S., Bruckmaier R.M. Milk somatic cell count, lactate dehydrogenase activity, and immunoglobulin G concentration associated with mastitis caused by different pathogens: A field study. Schweizer Archiv Tierheilkunde. 2017;159:283–290. doi: 10.17236/sat00115. PubMed DOI
Sipka A.A., Gurjar A., Klaessig S., Duhamel G.E., Skidmore A., Swinkels J., Cox P., Schukken Y. Prednisolone and cefapirin act synergistically in resolving experimental Escherichia coli mastitis. J. Dairy Sci. 2013;95:4406–4418. doi: 10.3168/jds.2012-6455. PubMed DOI
Wall S.K., Hernández-Castellano E., Ahmadpour A., Bruckmaier R.M., Wellnitz O. Differential glucocorticoid-induced closure of the blood-milk barrier during lipopolysaccharide-and lipoteichoic acid-induced mastitis in dairy cows. J. Dairy Sci. 2016;99:7544–7553. doi: 10.3168/jds.2016-11093. PubMed DOI
Wall S.K., Wellnitz O., Hernández-Castellano L.E., Ahmadpour A., Bruckmaier R.M. Supraphysiological oxytocin increases the transfer of immunoglobulins and other blood components to milk during lipopolysaccharide and lipoteichoic acid-induced mastitis in dairy cows. J. Dairy. Sci. 2016;99:9165–9173. doi: 10.3168/jds.2016-11548. PubMed DOI
Grohn Y.T., Rajala-Schultz P.J., Allore H.G., Delorenzo M.A., Hertl J.A., Galligan D.T. Optimizing replacement of dairy cows: Modelling the effects of diseases. Prev. Vet. Med. 2003;61:27–43. doi: 10.1016/S0167-5877(03)00158-2. PubMed DOI
St. Rose S.G., Swinkels J.M., Kremer W.D.J., Kruitwagen C.L.J.J., Zadoks R.N. Effect of penethamate hydriodide treatment on bacteriological cure, somatic cell count and milk production of cows and quarters with chronic subclinical Streptococcus uberis or Streptococcus dysgalactiae infections. J. Dairy Res. 2003;70:387–394. doi: 10.1017/S0022029903006460. PubMed DOI
Berry E.A., Hogeveen H., Hillerton J.E. Decision tree analysis to evaluate dry cow strategies. J. Dairy Res. 2004;71:409–418. doi: 10.1017/S0022029904000433. PubMed DOI
Bar D., Tauer L.W., Bennet G., Gonzalez R.N., Hertl J.A., Schukken Y.H., Schulte H.F., Welcome F.L., Grohn Y.T. The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming. J. Dairy Sci. 2008;91:2205–2214. doi: 10.3168/jds.2007-0573. PubMed DOI
Cha E., Bar D., Hertl J.A., Tauer L.W., Bennett G., Gonzalez R.N., Schukken Y.H., Welcome F.L., Gröm Y.T. The cost and management of different types of clinical mastitis in dairy cows estimated by dynamic programming. J. Dairy Sci. 2011;94:4476–4487. doi: 10.3168/jds.2010-4123. PubMed DOI
Dahl M.O., De Vries A., Maunsell F.P., Galvao K.N., Risco C.A., Hernandez J.A. Epidemiologic and economic analyses of pregnancy loss attributable to mastitis in primiparous Holstein cows. J. Dairy Sci. 2018;101:10142–10150. doi: 10.3168/jds.2018-14619. PubMed DOI
Coulon J.B., Gasqui P., Barnouin J., Ollier A., Pradel P., Pomiès D. Effect of mastitis and related-germ on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim. Res. 2002;51:383–393. doi: 10.1051/animres:2002031. DOI
Halasa T., Nielen M., De Roos A.P.W., van Hoorne R., de Jong G., Lam T.J.G.M., van Werven T., Hogeveen H. Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. J. Dairy Sci. 2009;92:599–606. doi: 10.3168/jds.2008-1564. PubMed DOI
Gonçalves J.L., Tomazi T., Barreiro J.R., Beuron D.C., Arcari M.A., Lee S.H., Martins C.M.M.R., Araujo J.P., Jr., dos Santos M.V. Effects of bovine subclinical mastitis caused by Corynobacterium spp. On somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. 2016;209:87–92. doi: 10.1016/j.tvjl.2015.08.009. PubMed DOI
Bobbo T., Ruegg P.L., Stocco G., Fiore E., Gianesella M., Pasotto D., Bittante G., Cecchinato A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017;100:4868–4883. doi: 10.3168/jds.2016-12353. PubMed DOI
Gonçalves J.L., Kamphuis C., Martins C.M.M.R., Barreiro J.R., Tomazi T., Gameiro A.H., Hogeveen H., dos Santos M.V. Bovine subclinical mastitis reduces milk yield and economic return. Livest. Sci. 2018;210:25–32. doi: 10.1016/j.livsci.2018.01.016. DOI
Gussmann M., Steeneveld W., Kirkeby C., Hogeveen H., Nielen M., Farre M., Halasa T. Economic and epidemiological impact of different intervention strategies for clinical contagious mastitis. J. Dairy Sci. 2018;102:1483–1493. doi: 10.3168/jds.2018-14939. PubMed DOI
Hogeveen H., Huijps K., Lam T.J.G.M. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011;59:16–23. doi: 10.1080/00480169.2011.547165. PubMed DOI
McInerney J.P., Howe K.S., Schepers J.A. A Framework for economic analysis of disease in farm livestock. Prev. Vet. Med. 1992;13:137–154. doi: 10.1016/0167-5877(92)90098-Z. DOI
Yalcin C., Scott A.W., Logue D.N., Gunn J. The economic impact of mastitis-control procedures used in scottish dairy herds with high bulk-tank somatic-cell counts. Prev. Vet. Med. 1999;41:135–149. doi: 10.1016/S0167-5877(99)00052-5. PubMed DOI
Van Soest F.J.S., Santman-Berends I.M.G.A., Lam T.J.G.M., Hogeveen H. Failure and preventive costs of mastitis on Dutch dairy farms. J. Dairy Sci. 2016;99:8365–8374. doi: 10.3168/jds.2015-10561. PubMed DOI
Scanning Electrochemical Microscopy-Somatic Cell Count as a Method for Diagnosis of Bovine Mastitis
Dairy Cows' Udder Pathogens and Occurrence of Virulence Factors in Staphylococci
Effect of Streptococcus uberis on Gamma Delta T Cell Phenotype in Bovine Mammary Gland