In Vitro Growth-Inhibitory Synergistic Effect of Zinc Pyrithione in Combination with Gentamicin against Bacterial Skin Pathogens of Livestock

. 2022 Jul 17 ; 11 (7) : . [epub] 20220717

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35884214

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845 Centre for the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of anthropogenic origin: comprehen-sive assessment of soil contamination risks for the quality of a
MZeRO0718 Ministry of Agriculture of the Czech Republic
project IGA 20223102 The Czech University of Life Sciences Prague

Odkazy

PubMed 35884214
PubMed Central PMC9311854
DOI 10.3390/antibiotics11070960
PII: antibiotics11070960
Knihovny.cz E-zdroje

Bacterial skin diseases of livestock could be a serious global threat, especially in association with overcoming bacterial resistance. Combinatory action of antimicrobial agents proves to be an effective strategy to overcome the problem of increasing antibiotic resistance of microorganisms. In this study, the in vitro combined effect of zinc pyrithione with gentamicin against bacterial skin pathogens of livestock (Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae) was evaluated according to the sum of fractional inhibitory concentration indices (FICI) obtained by checkerboard method. The results showed that a combination of zinc pyrithione with gentamicin produced a strong synergistic effect (p < 0.001) against all tested streptococcal strains (with FICI values ranging from 0.20 to 0.42). Compared to that, only three out of eight S. aureus strains were highly susceptible to the combination of antimicrobial agents at single concentration (0.25 µg/mL) of zinc pyrithione with range of FICI 0.35−0.43. These findings suggest that interference between agents tested in this study can be used for the development of future veterinary pharmaceutical preparations for the treatment of bacterial skin infections of livestock.

Zobrazit více v PubMed

Sharma M.C., Joshi C. Plants used in skin diseases of animals. Nat. Prod. Radiance. 2004;3:293–299.

Wassink G.J., George T.R., Kaler J., Green L.E. Footrot and interdigital dermatitis in sheep: Farmer satisfaction with current management, their ideal management and sources used to adopt new strategies. Prev. Vet. Med. 2010;96:65–73. doi: 10.1016/j.prevetmed.2010.06.002. PubMed DOI

Stulberg D., Pendrod M., Blatny R.A. Caring for common skin condition: Common bacterial skin infections. Am. Fam. Physician. 2002;66:119–125. PubMed

Foster A.P. Staphylococcal skin disease in livestock. Vet. Dermatol. 2012;23:342–351. doi: 10.1111/j.1365-3164.2012.01093.x. PubMed DOI

Apley M.D., Coetzee J.F. Antimicrobial Therapy in Veterinary Medicine. 5th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2013. Antimicrobial drug use in cattle; pp. 495–518.

Clark D. The Changing Nature of Farm Systems Research. The New Zealand Society of Animal Production; Hamilton, New Zealand: 2013.

Rodvold K.A., McConeghy K.W. Methicillin-resistant Staphylococcus aureus therapy: Past, present, and future. Clin. Infect. Dis. 2014;58:20–27. doi: 10.1093/cid/cit614. PubMed DOI

Gomes F., Henriques M. Control of bovine mastitis: Old and recent therapeutic approaches. Curr. Microbiol. 2016;72:377–382. doi: 10.1007/s00284-015-0958-8. PubMed DOI

Cobirka M., Tancin V., Slama P. Epidemiology and classification of mastitis. Animals. 2020;10:2212. doi: 10.3390/ani10122212. PubMed DOI PMC

Lozano C., Gharsa H., Ben Slama K., Zarazaga M., Torres C. Staphylococcus aureus in animals and food: Methicillin resistance, prevalence and population structure. A review in the African continent. Microorganisms. 2016;4:12. doi: 10.3390/microorganisms4010012. PubMed DOI PMC

Nöremark M., Frössling J., Sternber Lewerin S. Application of routines that contribute to on-farm biosecurity as reported by Swedish livestock farmers. Transbound. Emerg. Dis. 2010;57:225–236. doi: 10.1111/j.1865-1682.2010.01140.x. PubMed DOI

Al Sheikh H.M., Sultan I., Kumar V., Rather I.A., Al-Sheikh H., Jan A.T., Haq Q.M.R. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics. 2020;9:480. doi: 10.3390/antibiotics9080480. PubMed DOI PMC

Barbieri R., Coppo E., Marchese A., Daglia M., Sobarzo-Sánchez E., Nabavi S.F., Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017;196:44–68. doi: 10.1016/j.micres.2016.12.003. PubMed DOI

Begashaw B., Mishra B., Tsegaw A., Shewamene Z. Methanol leaves extract Hibiscus micranthus Linn exhibited antibacterial and wound healing activities. BMC Complementary Altern. Med. 2017;17:337. doi: 10.1186/s12906-017-1841-x. PubMed DOI PMC

Barak-Shinar D., Green L.J. Scalp seborrheic dermatitis and dandruff therapy using a herbal and zinc pyrithione-based therapy of shampoo and scalp lotion. J. Clin. Aesthetic Dermatol. 2018;11:26–31. PubMed PMC

Deeksha R.M., Sharma P.K. Advancement in shampoo (a dermal care product): Preparation methods, patents and commercial utility. Recent Pat. Inflamm. Allergy Drug Discov. 2014;8:48–58. doi: 10.2174/1872213X08666140115110727. PubMed DOI

Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI

Blanchard C., Brooks L., Ebsworth-Mojica K., Didione L., Wucher B., Dewhurst S., Krysan D., Dunman P.M., Wozniak R.A.F., Fey P.D. Zinc pyrithione improves the antibacterial activity of silver sulfadiazine ointment. MSphere. 2016;1:e00194-16. doi: 10.1128/mSphere.00194-16. PubMed DOI PMC

Schwartz J.R., Bacon R.A., Shah R., Mizoguchi H., Tosti A. Therapeutic efficacy of anti-dandruff shampoos: A randomized clinical trial comparing products based on potentiated zinc pyrithione and zinc pyrithione/climbazole. Int. J. Cosmet. Sci. 2013;35:381–387. doi: 10.1111/ics.12055. PubMed DOI

Yechiel E. Delivery System Handbook for Personal Care and Cosmetic Products. William Andrew Publishing; Norwich, NY, USA: 2005. Interactive vehicles in synergistic cosmeceuticals: Advances in nanoencapsulation, transportation, transfer, and targeting; pp. 303–319.

Boothe D.M. (Auburn University, Auburn, AL, USA). Personal communication. 2015.

Hu Y., Liu A., Vaudrey J., Vaiciunaite B., Moigboi C., McTavish S.M., Kearns A., Coates A. Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. PLoS ONE. 2015;10:e0117664. doi: 10.1371/journal.pone.0117664. PubMed DOI PMC

Ruppen C., Lupo A., Decosterd L., Sendi P. Is penicillin plus gentamicin synergistic against clinical group B Streptococcus isolates?: An in vitro study. Front. Microbiol. 2016;7:1680. doi: 10.3389/fmicb.2016.01680. PubMed DOI PMC

Kalnins N.J., Haworth M., Croton C., Gibson J.S., Stewart A.J., Purcell S.L. Treatment of moderate grad dog bite wounds using amoxicillin-clavuanic acid with and without enrofloxacin: A randomised non-inferiority trial. Aust. Vet. J. 2021;99:369–377. doi: 10.1111/avj.13093. PubMed DOI

Shin B., Park W. Zoonotic diseases and phytochemical medicines for microbial infections in veterinary science: Current state ad future prospective. Front. Vet. Sci. 2018;5:166. doi: 10.3389/fvets.2018.00166. PubMed DOI PMC

Maia N.L., Barros M., Oliveira L.L., Cardoso S.A., Santos M.H., Pieri F.A., Ramalho T.C., Cunha E.F.F., Moreira M.A.S. Synergism of plant compound with traditional antimicrobials against Streptococcus spp. isolated from bovine mastitis. Front. Microbiol. 2018;9:1203. doi: 10.3389/fmicb.2018.01203. PubMed DOI PMC

Sreepian A., Popruk S., Nutalai D., Phutthanu C., Sreepian P.M. Antibacterial activities and synergistic interaction of citrus essential oils and limonene with gentamicin against clinically isolated methicillin-resistant Staphylococcus aureus. Sci. World J. 2022;2022:8418287. doi: 10.1155/2022/8418287. PubMed DOI PMC

Performance Standards for Antimicrobial Susceptibility Testing. [(accessed on 20 January 2020)]. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf.

Paduszynska M.A., Greber K.E., Paduszynski W., Sawicki W., Kamysz W. Activity of temporin A and short lipopeptides combined with gentamicin against biofilm formed by Staphylococcus aureus and Pseudomonas aeruginosa. Antibiotics. 2020;9:566. doi: 10.3390/antibiotics9090566. PubMed DOI PMC

Murray P.R., Baron E.J., Pfaller M.A., Tenover F.C., Yolken R.H. Mannual of Clinical Microbiology. 7th ed. American Society for Microbiology; Washington, DC, USA: 2007. pp. 1532–1533.

Lin L., Huang X., Yang H., He Y., He X., Huang J., Li S., Wang X., Tang S., Liu G., et al. Molecular epidemiology, antimicrobial activity, and virulence gene clustering of Streptococcus agalactiae isolated from dairy cattle with mastitis in China. J. Dairy Sci. 2021;104:4893–4903. doi: 10.3168/jds.2020-19139. PubMed DOI

Oh S.I., Kim J.W., Jung J.Y., Chae M., Lee Y.R., Kim J.H., So B.J., Kim H.Y. Pathologic and molecular characterization of Streptococcus dysgalactiae subsp. equisimilis infection in neonatal piglets. J. Vet. Sci. 2018;19:313–317. doi: 10.4142/jvs.2018.19.2.313. PubMed DOI PMC

Moreno M.G., Trampuz A., di Luca M. Synergistic antibiotic activity against planktonic and biofilm-embeded Streptococus agalactiae, Streptococcus pyogenes and Streptococcus oralis. J. Antimicrob. Chemother. 2017;72:3085–3092. doi: 10.1093/jac/dkx265. PubMed DOI

Hsieh M.H., Yu C.M., Yu V.L., Chow J.W. Synergy assessed by checkerboard. A critical analysis. Diagn. Microbiol. Infect. Dis. 1993;16:343–349. doi: 10.1016/0732-8893(93)90087-N. PubMed DOI

Albert A., Rees C.W., Tomlinson A.J.H. The influence of chemical constitution on antibacterial activity. Part VIII. 2-mercaptopyridine N-oxide, and some general observations on metal-binding agents. Br. J. Exp. Pathol. 1956;37:500–511. PubMed PMC

Latchman D.S. Transcription factors: An overview. Int. J. Exp. Pathol. 1993;74:417–422. doi: 10.1016/S1357-2725(97)00085-X. PubMed DOI PMC

Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28:304–305. doi: 10.1093/nar/28.1.304. PubMed DOI PMC

de Baaij J.H., Hoenderop J.G., Bindels R.J. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015;95:1–46. doi: 10.1152/physrev.00012.2014. PubMed DOI

Freisinger E., Sigel R.K.O. From nucleotides to ribozymes-a comparison of their metal ion binding properties. Coord. Chem. Rev. 2007;251:1834–1851. doi: 10.1016/j.ccr.2007.03.008. DOI

Dinning A.J., AL-Adham I.S., Austin P., Charlton M., Collier P.J. Pyrithione biocide interactions with bacterial phospholipid head groups. J. Appl. Microbiol. 1998;85:132–140. doi: 10.1046/j.1365-2672.1998.00477.x. PubMed DOI

Almatrood W., Nakouti I., Hobbs G. Microtiter plate with built-in oxygen sensors: A novel approach to investigate the dynamics of Pseudomonas aeruginosa growth suppression in the presence of divalent cations and antibiotics. Arch. Microbiol. 2022;204:297. doi: 10.1007/s00203-022-02877-y. PubMed DOI PMC

Jia Y., Joly H., Omri A. Liposomes as a carrier for gentamicin delivery: Development and evaluation of the physicochemical properties. Int. J. Pharm. 2008;359:254–263. doi: 10.1016/j.ijpharm.2008.03.035. PubMed DOI

Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. doi: 10.1016/j.cell.2007.06.049. PubMed DOI

Chandler C.J., Segel I.H. Mechanism of the antibacterial action of pyrithione: Effects on membrane transport, ATP levels and protein synthesis. Antimicrob. Agents Chemother. 1978;14:60–68. doi: 10.1128/AAC.14.1.60. PubMed DOI PMC

Lloyd D.H., Page S.W. Antimicrobial stewardship in veterinary medicine. Microbiol. Spectr. 2018;6:6. doi: 10.1128/microbiolspec.ARBA-0023-2017. PubMed DOI

National Registration Authority for Agricultural and Veterinary Chemicals . Evaluation of the New Active Zinc Pyrithione in the Product International Intersmooth 360 Ecoloflex Antifouling. NRA; Canberra, Australia: 2001.

Mangion S.E., Holmes A.M., Roberts M.S. Targeted delivery of zinc pyrithione to skin epithelia. Int. J. Mol. Sci. 2021;22:9730. doi: 10.3390/ijms22189730. PubMed DOI PMC

Scientific Committee on Consumer Safety . Opinion on Zinc Pyrithione. SCCS; Luxembourg: 2013.

Maglio D., Nightingale C.H., Nicolau D.P. Extended interval aminoglycoside dosing: From concept to clinic. Int. J. Antimicrob. Agents. 2002;19:341–348. doi: 10.1016/S0924-8579(02)00030-4. PubMed DOI

Kowalska-Krochmal B., Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens. 2021;10:165. doi: 10.3390/pathogens10020165. PubMed DOI PMC

Rondevaldova J., Hummelova J., Tauchen J., Kokoska L. In vitro antistaphylococcal synergistic effect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb. Drug Resist. 2018;24:24–29. doi: 10.1089/mdr.2017.0033. PubMed DOI

Clinical and Laboratory Standards Institute . Approved Standard M07. 11th ed. CLSI; Wayne, PA, USA: 2018. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically.

Cos P., Vlietinck A.J., Berghe D., Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI

Leber A. Clinical Microbiology Procedures Handbook. 4th ed. Volume 1–3. ASM Press; Washington, DC, USA: 2016. synergism testing: Broth microdilution checkerboard and broth macrodilution methods; pp. 1–23.

Odds F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003;52:1. doi: 10.1093/jac/dkg301. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace