In Vitro Growth-Inhibitory Synergistic Effect of Zinc Pyrithione in Combination with Gentamicin against Bacterial Skin Pathogens of Livestock
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
Centre for the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of anthropogenic origin: comprehen-sive assessment of soil contamination risks for the quality of a
MZeRO0718
Ministry of Agriculture of the Czech Republic
project IGA 20223102
The Czech University of Life Sciences Prague
PubMed
35884214
PubMed Central
PMC9311854
DOI
10.3390/antibiotics11070960
PII: antibiotics11070960
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial interaction, checkerboard microdilution method, fractional inhibitory concentration, gentamicin, zinc pyrithione,
- Publikační typ
- časopisecké články MeSH
Bacterial skin diseases of livestock could be a serious global threat, especially in association with overcoming bacterial resistance. Combinatory action of antimicrobial agents proves to be an effective strategy to overcome the problem of increasing antibiotic resistance of microorganisms. In this study, the in vitro combined effect of zinc pyrithione with gentamicin against bacterial skin pathogens of livestock (Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae) was evaluated according to the sum of fractional inhibitory concentration indices (FICI) obtained by checkerboard method. The results showed that a combination of zinc pyrithione with gentamicin produced a strong synergistic effect (p < 0.001) against all tested streptococcal strains (with FICI values ranging from 0.20 to 0.42). Compared to that, only three out of eight S. aureus strains were highly susceptible to the combination of antimicrobial agents at single concentration (0.25 µg/mL) of zinc pyrithione with range of FICI 0.35−0.43. These findings suggest that interference between agents tested in this study can be used for the development of future veterinary pharmaceutical preparations for the treatment of bacterial skin infections of livestock.
Zobrazit více v PubMed
Sharma M.C., Joshi C. Plants used in skin diseases of animals. Nat. Prod. Radiance. 2004;3:293–299.
Wassink G.J., George T.R., Kaler J., Green L.E. Footrot and interdigital dermatitis in sheep: Farmer satisfaction with current management, their ideal management and sources used to adopt new strategies. Prev. Vet. Med. 2010;96:65–73. doi: 10.1016/j.prevetmed.2010.06.002. PubMed DOI
Stulberg D., Pendrod M., Blatny R.A. Caring for common skin condition: Common bacterial skin infections. Am. Fam. Physician. 2002;66:119–125. PubMed
Foster A.P. Staphylococcal skin disease in livestock. Vet. Dermatol. 2012;23:342–351. doi: 10.1111/j.1365-3164.2012.01093.x. PubMed DOI
Apley M.D., Coetzee J.F. Antimicrobial Therapy in Veterinary Medicine. 5th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2013. Antimicrobial drug use in cattle; pp. 495–518.
Clark D. The Changing Nature of Farm Systems Research. The New Zealand Society of Animal Production; Hamilton, New Zealand: 2013.
Rodvold K.A., McConeghy K.W. Methicillin-resistant Staphylococcus aureus therapy: Past, present, and future. Clin. Infect. Dis. 2014;58:20–27. doi: 10.1093/cid/cit614. PubMed DOI
Gomes F., Henriques M. Control of bovine mastitis: Old and recent therapeutic approaches. Curr. Microbiol. 2016;72:377–382. doi: 10.1007/s00284-015-0958-8. PubMed DOI
Cobirka M., Tancin V., Slama P. Epidemiology and classification of mastitis. Animals. 2020;10:2212. doi: 10.3390/ani10122212. PubMed DOI PMC
Lozano C., Gharsa H., Ben Slama K., Zarazaga M., Torres C. Staphylococcus aureus in animals and food: Methicillin resistance, prevalence and population structure. A review in the African continent. Microorganisms. 2016;4:12. doi: 10.3390/microorganisms4010012. PubMed DOI PMC
Nöremark M., Frössling J., Sternber Lewerin S. Application of routines that contribute to on-farm biosecurity as reported by Swedish livestock farmers. Transbound. Emerg. Dis. 2010;57:225–236. doi: 10.1111/j.1865-1682.2010.01140.x. PubMed DOI
Al Sheikh H.M., Sultan I., Kumar V., Rather I.A., Al-Sheikh H., Jan A.T., Haq Q.M.R. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics. 2020;9:480. doi: 10.3390/antibiotics9080480. PubMed DOI PMC
Barbieri R., Coppo E., Marchese A., Daglia M., Sobarzo-Sánchez E., Nabavi S.F., Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017;196:44–68. doi: 10.1016/j.micres.2016.12.003. PubMed DOI
Begashaw B., Mishra B., Tsegaw A., Shewamene Z. Methanol leaves extract Hibiscus micranthus Linn exhibited antibacterial and wound healing activities. BMC Complementary Altern. Med. 2017;17:337. doi: 10.1186/s12906-017-1841-x. PubMed DOI PMC
Barak-Shinar D., Green L.J. Scalp seborrheic dermatitis and dandruff therapy using a herbal and zinc pyrithione-based therapy of shampoo and scalp lotion. J. Clin. Aesthetic Dermatol. 2018;11:26–31. PubMed PMC
Deeksha R.M., Sharma P.K. Advancement in shampoo (a dermal care product): Preparation methods, patents and commercial utility. Recent Pat. Inflamm. Allergy Drug Discov. 2014;8:48–58. doi: 10.2174/1872213X08666140115110727. PubMed DOI
Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI
Blanchard C., Brooks L., Ebsworth-Mojica K., Didione L., Wucher B., Dewhurst S., Krysan D., Dunman P.M., Wozniak R.A.F., Fey P.D. Zinc pyrithione improves the antibacterial activity of silver sulfadiazine ointment. MSphere. 2016;1:e00194-16. doi: 10.1128/mSphere.00194-16. PubMed DOI PMC
Schwartz J.R., Bacon R.A., Shah R., Mizoguchi H., Tosti A. Therapeutic efficacy of anti-dandruff shampoos: A randomized clinical trial comparing products based on potentiated zinc pyrithione and zinc pyrithione/climbazole. Int. J. Cosmet. Sci. 2013;35:381–387. doi: 10.1111/ics.12055. PubMed DOI
Yechiel E. Delivery System Handbook for Personal Care and Cosmetic Products. William Andrew Publishing; Norwich, NY, USA: 2005. Interactive vehicles in synergistic cosmeceuticals: Advances in nanoencapsulation, transportation, transfer, and targeting; pp. 303–319.
Boothe D.M. (Auburn University, Auburn, AL, USA). Personal communication. 2015.
Hu Y., Liu A., Vaudrey J., Vaiciunaite B., Moigboi C., McTavish S.M., Kearns A., Coates A. Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. PLoS ONE. 2015;10:e0117664. doi: 10.1371/journal.pone.0117664. PubMed DOI PMC
Ruppen C., Lupo A., Decosterd L., Sendi P. Is penicillin plus gentamicin synergistic against clinical group B Streptococcus isolates?: An in vitro study. Front. Microbiol. 2016;7:1680. doi: 10.3389/fmicb.2016.01680. PubMed DOI PMC
Kalnins N.J., Haworth M., Croton C., Gibson J.S., Stewart A.J., Purcell S.L. Treatment of moderate grad dog bite wounds using amoxicillin-clavuanic acid with and without enrofloxacin: A randomised non-inferiority trial. Aust. Vet. J. 2021;99:369–377. doi: 10.1111/avj.13093. PubMed DOI
Shin B., Park W. Zoonotic diseases and phytochemical medicines for microbial infections in veterinary science: Current state ad future prospective. Front. Vet. Sci. 2018;5:166. doi: 10.3389/fvets.2018.00166. PubMed DOI PMC
Maia N.L., Barros M., Oliveira L.L., Cardoso S.A., Santos M.H., Pieri F.A., Ramalho T.C., Cunha E.F.F., Moreira M.A.S. Synergism of plant compound with traditional antimicrobials against Streptococcus spp. isolated from bovine mastitis. Front. Microbiol. 2018;9:1203. doi: 10.3389/fmicb.2018.01203. PubMed DOI PMC
Sreepian A., Popruk S., Nutalai D., Phutthanu C., Sreepian P.M. Antibacterial activities and synergistic interaction of citrus essential oils and limonene with gentamicin against clinically isolated methicillin-resistant Staphylococcus aureus. Sci. World J. 2022;2022:8418287. doi: 10.1155/2022/8418287. PubMed DOI PMC
Performance Standards for Antimicrobial Susceptibility Testing. [(accessed on 20 January 2020)]. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf.
Paduszynska M.A., Greber K.E., Paduszynski W., Sawicki W., Kamysz W. Activity of temporin A and short lipopeptides combined with gentamicin against biofilm formed by Staphylococcus aureus and Pseudomonas aeruginosa. Antibiotics. 2020;9:566. doi: 10.3390/antibiotics9090566. PubMed DOI PMC
Murray P.R., Baron E.J., Pfaller M.A., Tenover F.C., Yolken R.H. Mannual of Clinical Microbiology. 7th ed. American Society for Microbiology; Washington, DC, USA: 2007. pp. 1532–1533.
Lin L., Huang X., Yang H., He Y., He X., Huang J., Li S., Wang X., Tang S., Liu G., et al. Molecular epidemiology, antimicrobial activity, and virulence gene clustering of Streptococcus agalactiae isolated from dairy cattle with mastitis in China. J. Dairy Sci. 2021;104:4893–4903. doi: 10.3168/jds.2020-19139. PubMed DOI
Oh S.I., Kim J.W., Jung J.Y., Chae M., Lee Y.R., Kim J.H., So B.J., Kim H.Y. Pathologic and molecular characterization of Streptococcus dysgalactiae subsp. equisimilis infection in neonatal piglets. J. Vet. Sci. 2018;19:313–317. doi: 10.4142/jvs.2018.19.2.313. PubMed DOI PMC
Moreno M.G., Trampuz A., di Luca M. Synergistic antibiotic activity against planktonic and biofilm-embeded Streptococus agalactiae, Streptococcus pyogenes and Streptococcus oralis. J. Antimicrob. Chemother. 2017;72:3085–3092. doi: 10.1093/jac/dkx265. PubMed DOI
Hsieh M.H., Yu C.M., Yu V.L., Chow J.W. Synergy assessed by checkerboard. A critical analysis. Diagn. Microbiol. Infect. Dis. 1993;16:343–349. doi: 10.1016/0732-8893(93)90087-N. PubMed DOI
Albert A., Rees C.W., Tomlinson A.J.H. The influence of chemical constitution on antibacterial activity. Part VIII. 2-mercaptopyridine N-oxide, and some general observations on metal-binding agents. Br. J. Exp. Pathol. 1956;37:500–511. PubMed PMC
Latchman D.S. Transcription factors: An overview. Int. J. Exp. Pathol. 1993;74:417–422. doi: 10.1016/S1357-2725(97)00085-X. PubMed DOI PMC
Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28:304–305. doi: 10.1093/nar/28.1.304. PubMed DOI PMC
de Baaij J.H., Hoenderop J.G., Bindels R.J. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015;95:1–46. doi: 10.1152/physrev.00012.2014. PubMed DOI
Freisinger E., Sigel R.K.O. From nucleotides to ribozymes-a comparison of their metal ion binding properties. Coord. Chem. Rev. 2007;251:1834–1851. doi: 10.1016/j.ccr.2007.03.008. DOI
Dinning A.J., AL-Adham I.S., Austin P., Charlton M., Collier P.J. Pyrithione biocide interactions with bacterial phospholipid head groups. J. Appl. Microbiol. 1998;85:132–140. doi: 10.1046/j.1365-2672.1998.00477.x. PubMed DOI
Almatrood W., Nakouti I., Hobbs G. Microtiter plate with built-in oxygen sensors: A novel approach to investigate the dynamics of Pseudomonas aeruginosa growth suppression in the presence of divalent cations and antibiotics. Arch. Microbiol. 2022;204:297. doi: 10.1007/s00203-022-02877-y. PubMed DOI PMC
Jia Y., Joly H., Omri A. Liposomes as a carrier for gentamicin delivery: Development and evaluation of the physicochemical properties. Int. J. Pharm. 2008;359:254–263. doi: 10.1016/j.ijpharm.2008.03.035. PubMed DOI
Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. doi: 10.1016/j.cell.2007.06.049. PubMed DOI
Chandler C.J., Segel I.H. Mechanism of the antibacterial action of pyrithione: Effects on membrane transport, ATP levels and protein synthesis. Antimicrob. Agents Chemother. 1978;14:60–68. doi: 10.1128/AAC.14.1.60. PubMed DOI PMC
Lloyd D.H., Page S.W. Antimicrobial stewardship in veterinary medicine. Microbiol. Spectr. 2018;6:6. doi: 10.1128/microbiolspec.ARBA-0023-2017. PubMed DOI
National Registration Authority for Agricultural and Veterinary Chemicals . Evaluation of the New Active Zinc Pyrithione in the Product International Intersmooth 360 Ecoloflex Antifouling. NRA; Canberra, Australia: 2001.
Mangion S.E., Holmes A.M., Roberts M.S. Targeted delivery of zinc pyrithione to skin epithelia. Int. J. Mol. Sci. 2021;22:9730. doi: 10.3390/ijms22189730. PubMed DOI PMC
Scientific Committee on Consumer Safety . Opinion on Zinc Pyrithione. SCCS; Luxembourg: 2013.
Maglio D., Nightingale C.H., Nicolau D.P. Extended interval aminoglycoside dosing: From concept to clinic. Int. J. Antimicrob. Agents. 2002;19:341–348. doi: 10.1016/S0924-8579(02)00030-4. PubMed DOI
Kowalska-Krochmal B., Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens. 2021;10:165. doi: 10.3390/pathogens10020165. PubMed DOI PMC
Rondevaldova J., Hummelova J., Tauchen J., Kokoska L. In vitro antistaphylococcal synergistic effect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb. Drug Resist. 2018;24:24–29. doi: 10.1089/mdr.2017.0033. PubMed DOI
Clinical and Laboratory Standards Institute . Approved Standard M07. 11th ed. CLSI; Wayne, PA, USA: 2018. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically.
Cos P., Vlietinck A.J., Berghe D., Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI
Leber A. Clinical Microbiology Procedures Handbook. 4th ed. Volume 1–3. ASM Press; Washington, DC, USA: 2016. synergism testing: Broth microdilution checkerboard and broth macrodilution methods; pp. 1–23.
Odds F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003;52:1. doi: 10.1093/jac/dkg301. PubMed DOI