Scanning Electrochemical Microscopy-Somatic Cell Count as a Method for Diagnosis of Bovine Mastitis

. 2022 Apr 01 ; 11 (4) : . [epub] 20220401

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35453748

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 AP would like to thank the funding by the European Regional Development Fund project "Plants as a tool for sustainable global development"

The method to diagnose mastitis is generally the somatic cell count (SCC) by flow cytometry measurement. When the number of somatic cells in raw milk is 2.0 × 105 cells/mL or more, the condition is referred to as mastitis. In the current study, we created a milk cell chip that serves as an electrochemical method that can be easily produced and used utilizing scanning electrochemical microscopy (SECM). The microelectrode present in the cell chip scans, and the difference between the oxygen concentration near the milk cell chip and in bulk is measured as the oxygen (O2) reduction current. We estimated the relationship between respiratory activity and the number of somatic cells in raw milk as a calibration curve, using scanning electrochemical microscopy-somatic cell count (SECM-SCC). As a result, a clear correlation was shown in the range of 104 cells/mL to 106 cells/mL. The respiration rate (F) was estimated to be about 10-16 mol/s per somatic cell. We also followed the increase in oxygen consumption during the respiratory burst using differentiation inducer phorbol 12-myristate 13-acetate (PMA) as an early stage of mastitis, accompanied with an increase in immune cells, which showed similar results. In addition, we were able to discriminate between cattle with mastitis and without mastitis.

Zobrazit více v PubMed

Bradley A. Bovine Mastitis: An Evolving Disease. Vet. J. 2002;164:116–128. doi: 10.1053/tvjl.2002.0724. PubMed DOI

Abebe R., Hatiya H., Abera M., Megersa B., Asmare K. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res. 2016;12:270. doi: 10.1186/s12917-016-0905-3. PubMed DOI PMC

Zigo F., Vasil M., Ondrašovičová S., Výrostková J., Bujok J., Pecka-Kielb E. Maintaining Optimal Mammary Gland Health and Prevention of Mastitis. Front. Vet. Sci. 2021;8:607311. doi: 10.3389/fvets.2021.607311. PubMed DOI PMC

Sah K., Karki P., Shrestha R.D., Sigdel A., Adesogan A.T., Dahl G.E. MILK Symposium review: Improving control of mastitis in dairy animals in Nepal. J. Dairy Sci. 2020;103:9740–9747. doi: 10.3168/jds.2020-18314. PubMed DOI

Pyörälä S. New Strategies to Prevent Mastitis. Reprod. Domest. Anim. 2002;37:211–216. doi: 10.1046/j.1439-0531.2002.00378.x. PubMed DOI

Cobirka M., Tancin V., Slama P. Epidemiology and Classification of Mastitis. Animals. 2020;10:2212. doi: 10.3390/ani10122212. PubMed DOI PMC

Sharma N., Singh N.K., Bhadwal M.S. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian-Australas. J. Anim. Sci. 2011;24:429–438. doi: 10.5713/ajas.2011.10233. DOI

Hillerton J.E. Redefining Mastitis Based on Somatic Cell Count, Bulletin of the International Dairy Federation No 345/1999: Quality and Safety of Raw Milk and Its Impact on Milk and Milk Products. International Dairy Federation; Brussels, Belgium: 1999. pp. 4–6.

Viguier C., Arora S., Gilmartin N., Welbeck K., O’Kennedy R. Mastitis detection: Current trends and future perspectives. Trends Biotechnol. 2009;27:486–493. doi: 10.1016/j.tibtech.2009.05.004. PubMed DOI

Dohoo I., Leslie K. Evaluation of changes in somatic cell counts as indicators of new intramammary infections. Prev. Vet. Med. 1991;10:225–237. doi: 10.1016/0167-5877(91)90006-N. DOI

Chaiyotwittayakun A., Aiumlamai S., Chanlun A., Srisupa S. Alternative Method for Determination of Milk Somatic Cell Count in Dairy Cow; Proceedings of the 15th Congress of the Federation of Asian Veterinary Associations, Fava-Oie Joint Symposium on Emerging Diseases; Bangkok, Thailand. 27–30 October 2008; pp. 17–18.

Zajac P., Zubricka S., Capla J., Zelenakova L. Fluorescence microscopy methods for the determination of somatic cell count in raw cow’s milk. Veterinární Med. 2016;61:612–622. doi: 10.17221/222/2015-VETMED. DOI

Kim K.-S., Noh H.-W., Lim S.-D., Choi C.-H., Kim Y.-J. Development of Rapid Somatic Cell Counting Method by Using Dye Adding NIR Spectroscopy. Korean J. Food Sci. Anim. Resour. 2008;28:63–68. doi: 10.5851/kosfa.2008.28.1.63. DOI

Albenzio M., Caroprese M. Differential leucocyte count for ewe milk with low and high somatic cell count. J. Dairy Res. 2010;78:43–48. doi: 10.1017/S0022029910000798. PubMed DOI

Zigo F., Elečko J., Farkašová Z., Zigová M., Vasiľ M., Ondrašovičová S., Lenka K. Preventive methods in reduction of mastitis pathogens in dairy cows. J. Microbiol. Biotechnol. Food Sci. 2019;9:121–126. doi: 10.15414/jmbfs.2019.9.1.121-126. DOI

Barnum D.A., Newbould F.H. The Use of the California Mastitis Test for the Detection of Bovine Mastitis. Can. Vet. J. Rev. Vet. Can. 1961;2:83–90. PubMed PMC

Ruegg P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017;100:10381–10397. doi: 10.3168/jds.2017-13023. PubMed DOI

Norberg E. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: A review. Livest. Prod. Sci. 2005;96:129–139. doi: 10.1016/j.livprodsci.2004.12.014. DOI

Sheldrake R., McGregor G., Hoare R. Somatic Cell Count, Electrical Conductivity, and Serum Albumin Concentration for Detecting Bovine Mastitis. J. Dairy Sci. 1983;66:548–555. doi: 10.3168/jds.S0022-0302(83)81824-4. PubMed DOI

Akhtar M., Guo S., Guo Y.-F., Zahoor A., Shaukat A., Chen Y., Umar T., Deng G., Guo M. Upregulated-gene expression of pro-inflammatory cytokines (TNF-alpha, IL-1 beta and IL-6) via TLRs following NF-kappa B and MAPKs in bovine mastitis. Acta Trop. 2020;207:105458. doi: 10.1016/j.actatropica.2020.105458. PubMed DOI

Halasa T., Nielen M., De Roos A.P.W., Van Hoorne R., de Jong G., Lam T.J.G.M., van Werven T., Hogeveen H. Production loss due to new subclinical mastitis in Dutch dairy cows estimated with a test-day model. J. Dairy Sci. 2009;92:1315. doi: 10.3168/jds.2008-1564. PubMed DOI

Schukken Y.H., Wilson D.J., Welcome F., Garrison-Tikofsky L., Gonzalez R.N. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 2003;34:579–596. doi: 10.1051/vetres:2003028. PubMed DOI

Oviedo-Boyso J., Valdez-Alarcón J.J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J.E., Bravo-Patiño A., Baizabal-Aguirre V.M. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect. 2007;54:399–409. doi: 10.1016/j.jinf.2006.06.010. PubMed DOI

Alluwaimi A.M., Leutenegger C.M., Farver T.B., Rossitto P.V., Smith W.L., Cullor J.S. The Cytokine Markers in Staphylococcus aureus Mastitis of Bovine Mammary Gland. J. Vet. Med. Ser. B. 2003;50:105–111. doi: 10.1046/j.1439-0450.2003.00628.x. PubMed DOI

Mehrzad J., Duchateau L., Burvenich C. Phagocytic and bactericidal activity of blood and milk-resident neutrophils against Staphylococcus aureus in primiparous and multiparous cows during early lactation. Vet. Microbiol. 2009;134:106–112. doi: 10.1016/j.vetmic.2008.09.001. PubMed DOI

Kimura S., Fukuda J., Tajima A., Suzuki H. On-chip diagnosis of subclinical mastitis in cows by electrochemical measurement of neutrophil activity in milk. Lab Chip. 2012;12:1309–1315. doi: 10.1039/c2lc20952g. PubMed DOI

Bard A.J., Fan F.R.F., Kwak J., Lev O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989;61:132–138. doi: 10.1021/ac00177a011. DOI

Bard A.J., Denuault G., Lee C., Mandler D., Wipf D.O. Scanning electrochemical microscopy—A new technique for the characterization and modification of surfaces. Acc. Chem. Res. 1990;23:357–363. doi: 10.1021/ar00179a002. DOI

Shiku H., Shiraishi T., Aoyagi S., Utsumi Y., Matsudaira M., Abe H., Hoshi H., Kasai S., Ohya H., Matsue T. Respiration activity of single bovine embryos entrapped in a cone-shaped microwell monitored by scanning electrochemical microscopy. Anal. Chim. Acta. 2004;522:51–58. doi: 10.1016/j.aca.2004.06.054. DOI

Shiku H., Torisawa Y.-S., Takagi A., Aoyagi S., Abe H., Hoshi H., Yasukawa T., Matsue T. Metabolic and enzymatic activities of individual cells, spheroids and embryos as a function of the sample size. Sens. Actuators B Chem. 2005;108:597–602. doi: 10.1016/j.snb.2004.12.030. DOI

Kai T., Zoski C.G., Bard A.J. Scanning electrochemical microscopy at the nanometer level. Chem. Commun. 2018;54:1934–1947. doi: 10.1039/C7CC09777H. PubMed DOI

Kaya T., Numai D., Nagamine K., Aoyagi S., Shiku H., Matsue T. Respiration activity of Escherichia coli entrapped in a cone-shaped microwell and cylindrical micropore monitored by scanning electrochemical microscopy (SECM) Analyst. 2004;129:529–534. doi: 10.1039/b316582e. PubMed DOI

Kikuchi H., Prasad A., Matsuoka R., Aoyagi S., Matsue T., Kasai S. Scanning Electrochemical Microscopy Imaging during Respiratory Burst in Human Cell. Front. Physiol. 2016;7:25. doi: 10.3389/fphys.2016.00025. PubMed DOI PMC

Prasad A., Kikuchi H., Inoue K.Y., Suzuki M., Sugiura Y., Sugai T., Tomonori A., Tada M., Kobayashi M., Matsue T., et al. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device. Front. Physiol. 2016;7:10. doi: 10.3389/fphys.2016.00109. PubMed DOI PMC

Kasai S., Shiku H., Torisawa Y.-S., Noda H., Yoshitake J., Shiraishi T., Yasukawa T., Watanabe T., Matsue T., Yoshimura T. Real-time monitoring of reactive oxygen species production during differentiation of human monocytic cell lines (THP-1) Anal. Chim. Acta. 2005;549:14–19. doi: 10.1016/j.aca.2005.06.034. DOI

Torisawa Y.-S., Ohara N., Nagamine K., Kasai S., Yasukawa T., Shiku H., Matsue T. Electrochemical Monitoring of Cellular Signal Transduction with a Secreted Alkaline Phosphatase Reporter System. Anal. Chem. 2006;78:7625–7631. doi: 10.1021/ac060737s. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...