Antioxidant properties and antimicrobial activity of selenium nanoparticles synthetized via Zambian medicinal herbs
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40540454
PubMed Central
PMC12180647
DOI
10.1371/journal.pone.0325460
PII: PONE-D-24-60037
Knihovny.cz E-zdroje
- MeSH
- antiinfekční látky * farmakologie chemie MeSH
- antioxidancia * farmakologie chemie MeSH
- Escherichia coli účinky léků MeSH
- kovové nanočástice * chemie MeSH
- léčivé rostliny * chemie MeSH
- mikrobiální testy citlivosti MeSH
- nanočástice * chemie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- Saccharomyces cerevisiae účinky léků růst a vývoj MeSH
- selen * chemie farmakologie MeSH
- Staphylococcus aureus účinky léků MeSH
- superoxiddismutasa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky * MeSH
- antioxidancia * MeSH
- rostlinné extrakty MeSH
- selen * MeSH
- superoxiddismutasa MeSH
Previous studies of green synthesized selenium nanoparticles (SeNPs) showed their unique properties such as antibacterial activity, biocompatibility, and antioxidant properties. This study aimed to use traditional Zambian medicinal herbs (Azadirachta indica, Moringa oleifera Gliricidia sepium, Cissus quadrangularis, Aloe barbadensis, Kigelia Africana, and Bobgunnia madagascariensis) to synthesize SeNPs and examine their potential to enhance the endogenous antioxidant system of model eukaryote. For SeNP characterization, dynamic light scattering, scanning electron microscopy, Fourier transform infrared spectroscopy,and absorbance spectra were used. Their minimal inhibitory concentration was investigated on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The antioxidant potential of SeNPs was examined on Saccharomyces cerevisiae (S. cerevisiae). Cell viability, total antioxidant capacity, and activity of superoxide dismutase, catalase, and glutathione peroxidase were evaluated. SeNPs did not show antimicrobial activity against E. coli, only mild activity against S. aureus. Experimental data suggested that SeNPs didn´t inhibit Saccharomyces cerevisiae growth while plant extracts and sodium selenite had an inhibitory effect. All tested plant extracts and SeNPs resulted in a significant decrease in superoxide dismutase activity compared to the control. Catalase activity significantly increased only in treatments with plant extracts or sodium selenite alone. Glutathione peroxidase activity remained the same for all studied SeNPs and plant extracts. These findings provide evidence of a complex influence of SeNPs or plant extracts on the cellular antioxidant system in S. cerevisiae. From the point of view of overall effectiveness, Azadirachta indica, Moringa oleifera, Aloe barbadensis, and Cissus quadrangularis SeNPs are promising, green-synthetized nanoparticles for combating oxidative stress in living organisms.
Zobrazit více v PubMed
Zhang F, Li XL, Wei YM. Selenium and Selenoproteins in Health. Biomolecules. 2023;13(5). PubMed PMC
Chilala P, Skalickova S, Horky P, Selenium Status of Southern Africa. Nutrients, 2024. 16(7). PubMed PMC
Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr. 2023;10:1136458. doi: 10.3389/fnut.2023.1136458 PubMed DOI PMC
Rayman MP. Selenium intake, status, and health: a complex relationship. Hormones (Athens). 2020;19(1):9–14. doi: 10.1007/s42000-019-00125-5 PubMed DOI PMC
Abdolahpur Monikh F, Chupani L, Smerkova K, Bosker T, Cizar P, Krzyzanek V, et al. Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. Environ Sci: Nano. 2020;7(8):2325–36. doi: 10.1039/d0en00240b DOI
Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83–90. doi: 10.1016/j.nut.2016.05.001 PubMed DOI
Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015;44(16):5778–92. doi: 10.1039/c4cs00363b PubMed DOI
Malyugina S, Skalickova S, Skladanka J, Slama P, Horky P. Biogenic selenium nanoparticles in animal nutrition: A review. Agriculture. 2021;11(12).
Behera A, Dharmalingam Jothinathan MK, Ryntathiang I, Saravanan S, Murugan R. Comparative Antioxidant Efficacy of Green-Synthesised Selenium Nanoparticles From Pongamia pinnata, Citrus sinensis, and Acacia auriculiformis: An In Vitro Analysis. Cureus. 2024;16(4):e58439. doi: 10.7759/cureus.58439 PubMed DOI PMC
El-Sayed H, Morad MY, Sonbol H, Hammam OA, Abd El-Hameed RM, Ellethy RA, et al. Myco-synthesized selenium nanoparticles as wound healing and antibacterial agent: An in vitro and in vivo investigation. Microorganisms. 2023;11(9). PubMed PMC
Al-Qaraleh SY, Al-Zereini WA, Oran SA, Al-Sarayreh AZ, Al-Dalain SE. Evaluation of the antioxidant activities of green synthesized selenium nanoparticles and their conjugated polyethylene glycol (PEG) form in vivo. OpenNano. 2022;8:100109.
Azhar S. Moringa oleifera - A Miraculous Tree. Bioscience Research. 2021;18(2):1211–8.
Atawodi SE, Atawodi JC. Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochemistry Reviews. 2009;8(3):601–20.
Wafaey AA, El Hawary SS, Kirollos F, Abdelhameed MF. An overview on gliricidia sepium in the pharmaceutical aspect: A review article. Egyptian Journal of Chemistry. 2023;66(1):479–96.
Kaur S, Bains K. Aloe Barbadensis Miller (Aloe Vera). Int J Vitam Nutr Res. 2024;94(3–4):308–21. doi: 10.1024/0300-9831/a000797 PubMed DOI
Rex MC, Ravi L. A review on Cissus quadrangularis L. as herbal medicine. Indian Journal of Natural Products and Resources. 2020;11(3):155–64.
Abbas Z. Therapeutic importance of Kigelia africana subsp. africana: an alternative medicine. Natural Product Research. 2023. PubMed
Kirkbride JH, Wiersema JH. Bobgunnia, a New African Genus of Tribe Swartzieae (Fabaceae, Faboideae). Brittonia. 1997;49(1):1. doi: 10.2307/2807690 DOI
Barichella M, Pezzoli G, Faierman SA, Raspini B, Rimoldi M, Cassani E, et al. Nutritional characterisation of Zambian Moringa oleifera: acceptability and safety of short-term daily supplementation in a group of malnourished girls. Int J Food Sci Nutr. 2019;70(1):107–15. doi: 10.1080/09637486.2018.1475550 PubMed DOI
Seifu E, Teketay D. Introduction and expansion of Moringa oleifera Lam. in Botswana: Current status and potential for commercialization. South African Journal of Botany. 2020;129:471–9. doi: 10.1016/j.sajb.2020.01.020 DOI
Adusei S, Azupio S. Neem: A Novel Biocide for Pest and Disease Control of Plants. Journal of Chemistry. 2022.
Sarkar S, Singh RP, Bhattacharya G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: an update on molecular approach. 3 Biotech. 2021;11(4). PubMed PMC
Wylie MR, Merrell DS. The Antimicrobial Potential of the Neem Tree Azadirachta indica. Frontiers in Pharmacology. 2022;13. PubMed PMC
Bello I, Shehu MW, Musa M, Zaini Asmawi M, Mahmud R. Kigelia africana (Lam.) Benth. (Sausage tree): Phytochemistry and pharmacological review of a quintessential African traditional medicinal plant. J Ethnopharmacol. 2016;189:253–76. doi: 10.1016/j.jep.2016.05.049 PubMed DOI
Sundaran J, Begum R, Vasanthi M, Kamalapathy M, Bupesh G, Sahoo U. A short review on pharmacological activity of Cissus quadrangularis. Bioinformation. 2020;16(8):579–85. doi: 10.6026/97320630016579 PubMed DOI PMC
Alamu EO, Joyce N, Juliet A, Joel N, Chazangwe R, Tesfai M, et al. Assessing the impact of Gliricidia agroforestry-based interventions on crop nutritional, antinutritional, functional, and mineral compositions in eastern Province, Zambia. Agroecology and Sustainable Food Systems. 2023;47(10):1440–60.
Aulanni’am A, Ora KM, Ariandini NA, Wuragil DK, Permata FS, Riawan W, Beltran MA, et al. Wound healing properties of Gliricidia sepium leaves from Indonesia and the Philippines in rats (Rattus norvegicus). Veterinary World. 2021;14(3):820–4. PubMed PMC
Stevenson PC, Nyirenda SP, Veitch NC. Highly glycosylated flavonoids from the pods of Bobgunnia madagascariensis. Tetrahedron Letters. 2010;51(36):4727–30.
Maroyi A. Medicinal uses of the Fabaceae family in Zimbabwe: A review. Plants-Basel. 2023;12(6). PubMed PMC
Anywar G, Tugume P, Kakudidi EK. A review of Aloe species used in traditional medicine in East Africa. South African Journal of Botany. 2022;147:1027–41.
Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu WC, et al. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep. 2021;11(1):1032. doi: 10.1038/s41598-020-80327-9 PubMed DOI PMC
Izquierdo A, Casas C, Herrero E. Selenite-induced cell death in Saccharomyces cerevisiae: protective role of glutaredoxins. Microbiology (Reading). 2010;156(Pt 9):2608–20. doi: 10.1099/mic.0.039719-0 PubMed DOI
George J, Edwards D, Pun S, Williams D. Evaluation of Antioxidant Capacity (ABTS and CUPRAC) and Total Phenolic Content (Folin-Ciocalteu) Assays of Selected Fruit, Vegetables, and Spices. Int J Food Sci. 2022;2022:2581470. doi: 10.1155/2022/2581470 PubMed DOI PMC
Stepankova H, Michalkova H, Splichal Z, Richtera L, Svec P, Vaculovic T, et al. Unveiling the nanotoxicological aspects of Se nanomaterials differing in size and morphology. Bioact Mater. 2022;20:489–500. doi: 10.1016/j.bioactmat.2022.06.014 PubMed DOI PMC
Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42(10):1524–33. doi: 10.1016/j.freeradbiomed.2007.02.013 PubMed DOI
Hadrup N, Loeschner K, Mandrup K, Ravn-Haren G, Frandsen HL, Larsen EH, et al. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug Chem Toxicol. 2019;42(1):76–83. doi: 10.1080/01480545.2018.1491589 PubMed DOI
Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, et al. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem. 2012;31(12):2812–20. doi: 10.1002/etc.1995 PubMed DOI
Bano I, Skalickova S, Arbab S, Urbankova L, Horky P. Toxicological effects of nanoselenium in animals. J Anim Sci Biotechnol. 2022;13(1):72. doi: 10.1186/s40104-022-00722-2 PubMed DOI PMC
Pyrzynska K, Sentkowska A. Biosynthesis of selenium nanoparticles using plant extracts. J Nanostruct Chem. 2021;12(4):467–80. doi: 10.1007/s40097-021-00435-4 DOI
Abubakar AR, Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J Pharm Bioallied Sci. 2020;12(1):1–10. doi: 10.4103/jpbs.JPBS_175_19 PubMed DOI PMC
Goodarzi V, Zamani H, Bajuli L, Moradshahi A. Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticles’ synthesis. Mol Biol Res Commun. 2014;3(3):165–74. PubMed PMC
Proestos C, Lytoudi K, Mavromelanidou OK, Zoumpoulakis P, Sinanoglou VJ. Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants. 2013;2(1):11–22. PubMed PMC
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, et al. Current overview of metal nanoparticles’ synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticles. Pharmaceuticals. 2023;16(10). PubMed PMC
Sentkowska A, Konarska J, Szmytke J, Grudniak A. Herbal polyphenols as selenium reducers in the green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs. Molecules. 2024;29(8). PubMed PMC
Hussain A, Lakhan MN, Hanan A, Soomro IA, Ahmed M, Bibi F, et al. Recent progress on green synthesis of selenium nanoparticles – a review. Materials Today Sustainability. 2023;23:100420. doi: 10.1016/j.mtsust.2023.100420 DOI
Vasanthakumar S, Manikandan M, Arumugam M. Green synthesis, characterization and functional validation of bio-transformed selenium nanoparticles. Biochem Biophys Rep. 2024;39:101760. doi: 10.1016/j.bbrep.2024.101760 PubMed DOI PMC
Sam S, Fiol N, Aguado RJ, Saguer E, Carrasco F, Delgado-Aguilar M, et al. Green synthesis and optimization of selenium nanoparticles using chitosan or cationic cellulose nanofibers. Cellulose. 2025;32(2):919–40.
Soliman MKY, Amin MA, Nowwar AI, Hendy MH, Salem SS. Green synthesis of selenium nanoparticles from Cassia javanica flowers extract and their medical and agricultural applications. Scientific Reports, 2024. 14(1). PubMed PMC
Alhawiti AS. Citric acid-mediated green synthesis of selenium nanoparticles: antioxidant, antimicrobial, and anticoagulant potential applications. Biomass Conversion and Biorefinery. 2024;14(5):6581–90. PubMed PMC
Pasieczna-Patkowska S, Cichy M, Flieger J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules. 2025;30(3). PubMed PMC
Fardsadegh B, Jafarizadeh-Malmiri H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis. 2019;8(1):399–407.
Mulla NA, Otari SV, Bohara RA, Yadav HM, Pawar SH. Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Materials Letters. 2020;264.
Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017;12:8211–25. doi: 10.2147/IJN.S132163 PubMed DOI PMC
Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, et al. Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. Front Bioeng Biotechnol. 2021;8:624621. doi: 10.3389/fbioe.2020.624621 PubMed DOI PMC
Kovac V, Bergant M, Ščančar J, Primožič J, Jamnik P, Poljšak B. Causation of Oxidative Stress and Defense Response of a Yeast Cell Model after Treatment with Orthodontic Alloys Consisting of Metal Ions. Antioxidants, 2022. 11(1). PubMed PMC
Herrero E, Wellinger RE. Yeast as a model system to study metabolic impact of selenium compounds. Microb Cell. 2015;2(5):139–49. doi: 10.15698/mic2015.05.200 PubMed DOI PMC
Zahoor H, Watchaputi K, Hata J, Pabuprapap W, Suksamrarn A, Chua LS, et al. Model yeast as a versatile tool to examine the antioxidant and anti-ageing potential of flavonoids, extracted from medicinal plants. Front Pharmacol. 2022;13:980066. doi: 10.3389/fphar.2022.980066 PubMed DOI PMC
Meng D, Zhang P, Li S, Ho C-T, Zhao H. Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. Journal of Functional Foods. 2017;38:36–44. doi: 10.1016/j.jff.2017.08.041 DOI
Gao Y, Fang L, Wang X, Lan R, Wang M, Du G, et al. Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using Saccharomyces Cerevisiae as a Model. Molecules. 2019;24(4):788. doi: 10.3390/molecules24040788 PubMed DOI PMC
Lazard M. Selenium metabolism and toxicity in the yeast Saccharomyces cerevisiae. MRAJ. 2021;9(9). doi: 10.18103/mra.v9i9.2550 DOI
Letavayová L, Vlasáková D, Spallholz JE, Brozmanová J, Chovanec M. Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutat Res. 2008;638(1–2):1–10. doi: 10.1016/j.mrfmmm.2007.08.009 PubMed DOI
Zhang T, Qi M, Wu Q, Xiang P, Tang D, Li Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front Nutr. 2023;10:1183487. doi: 10.3389/fnut.2023.1183487 PubMed DOI PMC
El-Badri AM, Hashem AM, Batool M, Sherif A, Nishawy E, Ayaad M, et al. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. J Nanobiotechnology. 2022;20(1):163. doi: 10.1186/s12951-022-01370-4 PubMed DOI PMC
Zhang J, Wang H, Yan X, Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci. 2005;76(10):1099–109. doi: 10.1016/j.lfs.2004.08.015 PubMed DOI
Guo X, Mei N. Aloe vera: A review of toxicity and adverse clinical effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2016;34(2):77–96. doi: 10.1080/10590501.2016.1166826 PubMed DOI PMC
Braga TM, Rocha L, Chung TY, Oliveira RF, Pinho C, Oliveira AI, et al. Azadirachta indica A. Juss. In Vivo Toxicity-An Updated Review. Molecules. 2021;26(2). PubMed PMC
Muyobela J, Nkunika POY, Mwase ET. In vitro acaricidal activity of Bobgunnia madagascariensis Desv. against Amblyomma variegatum (Fabricius) (Acari: Ixodidae). Trop Anim Health Prod. 2016;48(3):625–31. doi: 10.1007/s11250-016-1009-6 PubMed DOI
Asare GA, Gyan B, Bugyei K, Adjei S, Mahama R, Addo P, et al. Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. J Ethnopharmacol. 2012;139(1):265–72. doi: 10.1016/j.jep.2011.11.009 PubMed DOI
de Fátima Formiga Melo Diniz M, de Luna Freire Pessôa H, de Sá CB, Lira AB, da Silva Nunes Ramalho L, de Oliveira KM, et al. Non-clinical acute and chronic toxicity evaluations of Cissus sicyoides L. (Vitaceae) hydroalcoholic leaf extract. Toxicol Rep. 2018;5:890–6. doi: 10.1016/j.toxrep.2018.07.001 PubMed DOI PMC
Sivira A, Sanabria ME, Valera N, Vásquez C. Toxicity of ethanolic extracts from Lippia origanoides and Gliricidia sepium to Tetranychus cinnabarinus (Boisduval) (Acari: Tetranychidae). Neotrop Entomol. 2011;40(3):375–9. PubMed
Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. International Journal of Molecular Sciences. 2023;24(13). PubMed PMC
Luqman S, Kaushik S, Srivastava S, Kumar R, Bawankule DU, Pal A, et al. Protective effect of medicinal plant extracts on biomarkers of oxidative stress in erythrocytes. Pharmaceutical Biology. 2009;47(6):483–90.
Salehi B, Azzini E, Zucca P, Maria Varoni E, V. Anil Kumar N, Dini L, et al. Plant-derived bioactives and oxidative stress-related disorders: A key trend towards healthy aging and longevity promotion. Applied Sciences-Basel. 2020;10(3).
Montllor-Albalate C, Colin AE, Chandrasekharan B, Bolaji N, Andersen JL, Wayne Outten F, et al. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biol. 2019;21:101064. doi: 10.1016/j.redox.2018.11.022 PubMed DOI PMC
Martins D, English AM. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast. Redox Biol. 2014;2:308–13. doi: 10.1016/j.redox.2013.12.019 PubMed DOI PMC