Unveiling the nanotoxicological aspects of Se nanomaterials differing in size and morphology
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35800405
PubMed Central
PMC9237951
DOI
10.1016/j.bioactmat.2022.06.014
PII: S2452-199X(22)00280-8
Knihovny.cz E-zdroje
- Klíčová slova
- Aspect ratio, Biocompatibility, Nanorods, Nanotoxicology,
- Publikační typ
- časopisecké články MeSH
Although the general concept of nanotechnology relies on exploitation of size-dependent properties of nanoscaled materials, the relation between the size/morphology of nanoparticles with their biological activity remains not well understood. Therefore, we aimed at investigating the biological activity of Se nanoparticles, one of the most promising candidates of nanomaterials for biomedicine, possessing the same crystal structure, but differing in morphology (nanorods vs. spherical particles) and aspect ratios (AR, 11.5 vs. 22.3 vs. 1.0) in human cells and BALB/c mice. Herein, we report that in case of nanorod-shaped Se nanomaterials, AR is a critical factor describing their cytotoxicity and biocompatibility. However, spherical nanoparticles (AR 1.0) do not fit this statement and exhibit markedly higher cytotoxicity than lower-AR Se nanorods. Beside of cytotoxicity, we also show that morphology and size substantially affect the uptake and intracellular fate of Se nanomaterials. In line with in vitro data, in vivo i.v. administration of Se nanomaterials revealed the highest toxicity for higher-AR nanorods followed by spherical nanoparticles and lower-AR nanorods. Moreover, we revealed that Se nanomaterials are able to alter intracellular redox homeostasis, and affect the acidic intracellular vesicles and cytoskeletal architecture in a size- and morphology-dependent manner. Although the tested nanoparticles were produced from the similar sources, their behavior differs markedly, since each type is promising for several various application scenarios, and the presented testing protocol could serve as a concept standardizing the biological relevance of the size and morphology of the various types of nanomaterials and nanoparticles.
Central European Institute of Technology Masaryk University Kamenice 5 Brno CZ 625 00 Czech Republic
Department of Chemistry Masaryk University Kamenice 5 Brno CZ 625 00 Czech Republic
Zobrazit více v PubMed
Nel A., et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627. PubMed
van der Meel R., et al. Smart cancer nanomedicine. Nat. Nanotechnol. 2019;14(11):1007–1017. PubMed PMC
Pulizzi F. Nano in the future of crops. Nat. Nanotechnol. 2019;14(6) 507-507. PubMed
Malysheva A., Lombi E., Voelcker N.H. Bridging the divide between human and environmental nanotoxicology. Nat. Nanotechnol. 2015;10(10):835–844. PubMed
Buchtelova H., et al. Size-related cytotoxicological aspects of polyvinylpyrrolidone-capped platinum nanoparticles. Food Chem. Toxicol. 2017;105:337–346. PubMed
Gliga A.R., et al. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014;11:17. PubMed PMC
Wei Z.C., et al. Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles. J. Exp. Nanosci. 2014;9(6):625–638.
Xia Q.Y., et al. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int. J. Nanomed. 2019;14:6957–6970. PubMed PMC
Zhou G.Q., et al. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro. J. Nanopart. Res. 2016;18(5):14.
Yin H., Casey P.S. Effects of aspect ratio (AR) and specific surface area (SSA) on cytotoxicity and phototoxicity of ZnO nanomaterials. Chemosphere. 2015;124:116–121. PubMed
Fernando D., Sulthana S., Vasquez Y. Cellular uptake and cytotoxicity of varying aspect ratios of gold nanorods in HeLa cells. ACS Appl. Bio Mater. 2020;3(3):1374–1384. PubMed
Wang Y.J., et al. Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth in vitro and in vivo. Food Chem. Toxicol. 2015;85:71–77. PubMed
Qiu Y., et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 2010;31(30):7606–7619. PubMed
Michalkova H., et al. Complex cytotoxicity mechanism of bundles formed from self-organised 1-D anodic TiO2 nanotubes layers. J. Hazard Mater. 2020;388:1–12. PubMed
Bowman C.R., et al. Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system. Environ. Toxicol. Chem. 2012;31(8):1793–1800. PubMed
Rodea-Palomares I., et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol. Sci. 2011;119(1):135–145. PubMed
Weekley C.M., Harris H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 2013;42(23):8870–8894. PubMed
Kong L., et al. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials. 2011;32(27):6515–6522. PubMed
Lu K.-Y., et al. H2O2-Depleting and O2-generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages. ACS Appl. Mater. Interfaces. 2017;9(6):5158–5172. PubMed
Geoffrion L.D., et al. Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega. 2020;5(6):2660–2669. PubMed PMC
Abdolahpur Monikh F., et al. Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. Environ. Sci. Nano. 2020;7:2325–2336.
Huang T., et al. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937–14951. PubMed
Zhang J.S., et al. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles. Int. J. Nanomed. 2012;7:815–825. PubMed PMC
Chiou Y.D., Hsu Y.J. Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Appl. Catal. B Environ. 2011;105(1–2):211–219.
Necas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10(1):181–188.
Clemons T.D., et al. Coherency image analysis to quantify collagen architecture: implications in scar assessment. RSC Adv. 2018;8(18):9661–9669. PubMed PMC
Zareba M., et al. Oxidative stress in ARPE-19 cultures: do melanosomes confer cytoprotection? Free Radic. Biol. Med. 2006;40(1):87–100. PubMed
Michalkova H., et al. Tuning the surface coating of IONs toward efficient sonochemical tethering and sustained liberation of topoisomerase II poisons. Int. J. Nanomed. 2019;14:7609–7624. PubMed PMC
Shenasa M., Sainkar S., Lichtman D. XPS study of some selected selenium-compounds. J. Electron. Spectrosc. Relat. Phenom. 1986;40(4):329–337.
Crist V. vol. 1. Wiley; 1997. (Handbook of Monochromatic XPS Spectra: the Elements of Native Oxides).
Guggenheim E.J., et al. Comparison of confocal and super-resolution reflectance imaging of metal oxide nanoparticles. PLoS One. 2016;11(10):1–26. PubMed PMC
Gomes-Junior R.A., et al. Selenium-induced oxidative stress in coffee cell suspension cultures. Funct. Plant Biol. 2007;34(5):449–456. PubMed
Qiao B., et al. Induction of oxidative stress and cell apoptosis by selenium: the cure against oral carcinoma. Oncotarget. 2017;8(69):113614–113621. PubMed PMC
Uguz A.C., et al. Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and-9 activities. J. Membr. Biol. 2009;232(1–3):15–23. PubMed
Valdiglesias V., et al. In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch. Toxicol. 2010;84(5):337–351. PubMed
Boya P., Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–6451. PubMed
Wang H.L., Zhang J.S., Yu H.Q. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic. Biol. Med. 2007;42(10):1524–1533. PubMed
Peetla C., Vijayaraghavalu S., Labhasetwar V. Biophysics of cell membrane lipids in cancer drug resistance: implications for drug transport and drug delivery with nanoparticles. Adv. Drug Deliv. Rev. 2013;65(13–14):1686–1698. PubMed PMC
Ruggiero A., et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 2010;107(27):12369–12374. PubMed PMC
Chauhan V.P., et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem.-Int. Edit. 2011;50(48):11417–11420. PubMed PMC
Wang Y., et al. Systematic in vitro nanotoxicity study on anodic alumina nanotubes with engineered aspect ratio: understanding nanotoxicity by a nanomaterial model. Biomaterials. 2015;46:117–130. PubMed
Lee L.S., et al. Comparison of cytotoxicity and wound healing effect of carboxymethylcellulose and hyaluronic acid on human corneal epithelial cells. Int. J. Ophthalmol. 2015;8(2):215–221. PubMed PMC
Higa O.Z., et al. Biocompatibility study for PVP wound dressing obtained in different conditions. Radiat. Phys. Chem. 1999;55(5–6):705–707.
Huang X.L., et al. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010;31(3):438–448. PubMed
Gratton S.E.A., et al. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 2008;105(33):11613–11618. PubMed PMC
Parakhonskiy B., et al. The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J. Nanobiotechnol. 2015;13:13. PubMed PMC
Sengul A.B., Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ. Chem. Lett. 2020;18(5):1659–1683.
Rao S.Y., et al. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction. J. Mat. Chem. B. 2019;7(16):2648–2656. PubMed
Cao H., Xiao J.Y., Liu H.M. Enhanced oxidase-like activity of selenium nanoparticles stabilized by chitosan and application in a facile colorimetric assay for mercury (II) Biochem. Eng. J. 2019;152:1–10.
Guo L.L., Huang K.X., Liu H.M. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity. J. Nanopart. Res. 2016;18(3):1–10.
Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010;44(5):479–496. PubMed PMC
Letavayova L., Vlckova V., Brozmanova J. Selenium: from cancer prevention to DNA damage. Toxicology. 2006;227(1–2):1–14. PubMed
Kirwale S., et al. Selenium nanoparticles induce autophagy mediated cell death in human keratinocytes. Nanomedicine. 2019;14(15):1991–2010. PubMed
Xia Y., et al. Novel functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity in vitro. Nanoscale Res. Lett. 2015;10:1–14. PubMed PMC
Akinc A., Battaglia G. Exploiting endocytosis for nanomedicines. Cold Spring Harbor Perspect. Biol. 2013;5(11):1–24. PubMed PMC
Zhao J.C., Stenzel M.H. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym. Chem. 2018;9(3):259–272.
Bartneck M., et al. Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano. 2010;4(6):3073–3086. PubMed
Jia X., Li N., Chen J. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci. 2005;76(17):1989–2003. PubMed
Song G.S., et al. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angew. Chem.-Int. Edit. 2016;55(6):2122–2126. PubMed
Yang G.B., et al. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater. 2019;31(10):1–23. PubMed