Applicability of Selected 3D Printing Materials in Electrochemistry
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Czech Science Foundation
Czech Science Foundation
SVV260560
Charles University - Specific University Research
373521
Grant Agency of the Charles University
PubMed
35624610
PubMed Central
PMC9138249
DOI
10.3390/bios12050308
PII: bios12050308
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing materials, anodic stripping voltammetry, chemical stability, cyclic voltammetry, differential pulse voltammetry, electrochemistry, mechanical stability,
- MeSH
- 3D tisk * MeSH
- elektrochemie MeSH
- elektrody MeSH
- Publikační typ
- časopisecké články MeSH
This manuscript investigates the chemical and structural stability of 3D printing materials (3DPMs) frequently used in electrochemistry. Four 3D printing materials were studied: Clear photopolymer, Elastic photopolymer, PET filament, and PLA filament. Their stability, solubility, structural changes, flexibility, hardness, and color changes were investigated after exposure to selected organic solvents and supporting electrolytes. Furthermore, the available potential windows and behavior of redox probes in selected supporting electrolytes were investigated before and after the exposure of the 3D-printed objects to the electrolytes at various working electrodes. Possible electrochemically active interferences with an origin from the 3DPMs were also monitored to provide a comprehensive outline for the use of 3DPMs in electrochemical platform manufacturing.
Zobrazit více v PubMed
Cardoso R.M., Kalinke C., Rocha R.G., dos Santos P.L., Rocha D.P., Oliveira P.R., Janegitz B.C., Bonacin J.A., Richter E.M., Munoz R.A.A. Additive-manufactured (3d-printed) electrochemical sensors: A critical review. Anal. Chim. Acta. 2020;1118:73–91. doi: 10.1016/j.aca.2020.03.028. PubMed DOI
Escobar J.G., Vaneckova E., Lachmanova S.N., Vivaldi F., Heyda J., Kubista J., Shestivska V., Spanel P., Schwarzova-Peckova K., Rathousky J., et al. The development of a fully integrated 3d printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine. Electrochim. Acta. 2020;360:136984. doi: 10.1016/j.electacta.2020.136984. PubMed DOI PMC
Da Silveira G.D., Quero R.F., Bressan L.P., Bonacin J.A., de Jesus D.P., da Silva A.F. Ready-to-use 3d-printed electrochemical cell for in situ voltammetry of immobilized microparticles and Raman spectroscopy. Anal. Chim. Acta. 2021;1141:57–62. doi: 10.1016/j.aca.2020.10.023. PubMed DOI
Vaneckova E., Bousa M., Lachmanova S.N., Rathousky J., Gal M., Sebechlebska T., Kolivoska V. 3d printed polylactic acid/carbon black electrodes with nearly ideal electrochemical behaviour. J. Electroanal. Chem. 2020;857:113745. doi: 10.1016/j.jelechem.2019.113745. DOI
Sans V. Emerging trends in flow chemistry enabled by 3d printing: Robust reactors, biocatalysis and electrochemistry. Curr. Opin. Green Sustain. Chem. 2020;25:100367. doi: 10.1016/j.cogsc.2020.100367. DOI
Abdalla A., Patel B.A. 3d-printed electrochemical sensors: A new horizon for measurement of biomolecules. Curr. Opin. Electrochem. 2020;20:78–81. doi: 10.1016/j.coelec.2020.04.009. DOI
Hamzah H.H., Shafiee S.A., Abdalla A., Patel B.A. 3d printable conductive materials for the fabrication of electrochemical sensors: A mini review. Electrochem. Commun. 2018;96:27–31. doi: 10.1016/j.elecom.2018.09.006. DOI
Vaneckova E., Bousa M., Sokolova R., Moreno-Garcia P., Broekmann P., Shestivska V., Rathousky J., Gal M., Sebechlebska T., Kolivoska V. Copper electroplating of 3d printed composite electrodes. J. Electroanal. Chem. 2020;858:113763. doi: 10.1016/j.jelechem.2019.113763. DOI
Waseem M., Salah B., Habib T., Saleem W., Abas M., Khan R., Ghani U., Siddiqi M.U.R. Multi-response optimization of tensile creep behavior of pla 3d printed parts using categorical response surface methodology. Polymers. 2020;12:2962. doi: 10.3390/polym12122962. PubMed DOI PMC
Kumar M.B., Sathiya P. Methods and materials for additive manufacturing: A critical review on advancements and challenges. Thin-Walled Struct. 2021;159:107228. doi: 10.1016/j.tws.2020.107228. DOI
Alghamdi S.S., John S., Choudhury N.R., Dutta N.K. Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers. 2021;13:753. doi: 10.3390/polym13050753. PubMed DOI PMC
Junpha J., Wisitsoraat A., Prathumwan R., Chaengsawang W., Khomungkhun K., Subannajui K. Electronic tongue and cyclic voltammetric sensors based on carbon nanotube/polylactic composites fabricated by fused deposition modelling 3d printing. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020;117:111319. doi: 10.1016/j.msec.2020.111319. PubMed DOI
Choinska M., Hrdlicka V., Sestakova I., Navratil T. Voltammetric determination of heavy metals in honey bee venom using hanging mercury drop electrode and pla/carbon conductive filament for 3d printer. Monatsh. Chem. 2021;152:35–41. doi: 10.1007/s00706-020-02725-z. PubMed DOI PMC
Dixit C.K., Kadimisetty K., Rusling J. 3d-printed miniaturized fluidic tools in chemistry and biology. TrAC-Trends Anal. Chem. 2018;106:37–52. doi: 10.1016/j.trac.2018.06.013. PubMed DOI PMC
Stansbury J.W., Idacavage M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016;32:54–64. doi: 10.1016/j.dental.2015.09.018. PubMed DOI
Ambrosi A., Pumera M. 3d-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016;45:2740–2755. doi: 10.1039/C5CS00714C. PubMed DOI
Lee J.Y., An J., Chua C.K. Fundamentals and applications of 3d printing for novel materials. Appl. Mater. Today. 2017;7:120–133. doi: 10.1016/j.apmt.2017.02.004. DOI
Parra-Cabrera C., Achille C., Kuhn S., Ameloot R. 3d printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018;47:209–230. doi: 10.1039/C7CS00631D. PubMed DOI
Xing D., Chen L., Ma Q., Hao B., Gutnikov S.I., Lazoryak B.I., Mader E., Ma P.C. What happens to glass fiber under extreme chemical conditions? J. Non-Cryst. Solids. 2020;548:120331. doi: 10.1016/j.jnoncrysol.2020.120331. DOI
Gu H. Tensile behaviours of some high performance filaments after naoh treatment. Mater. Des. 2008;29:1893–1896. doi: 10.1016/j.matdes.2008.04.025. DOI
Heikkinen I.T.S., Kauppinen C., Liu Z.J., Asikainen S.M., Spoljaric S., Seppala J.V., Savin H., Pearce J.M. Chemical compatibility of fused filament fabrication-based 3-d printed components with solutions commonly used in semiconductor wet processing. Addit. Manuf. 2018;23:99–107. doi: 10.1016/j.addma.2018.07.015. DOI
Salentijn G.I.J., Oomen P.E., Grajewski M., Verpoorte E. Fused deposition modeling 3d printing for (bio)analytical device fabrication: Procedures, materials, and applications. Anal. Chem. 2017;89:7053–7061. doi: 10.1021/acs.analchem.7b00828. PubMed DOI PMC
IUPAC Compendium of Analytical Nomenclature. [(accessed on 26 November 2021)]. Available online: https://media.iupac.org/publications/analytical_compendium/
Novotny F., Urbanova V., Plutnar J., Pumera M. Preserving fine structure details and dramatically enhancing electron transfer rates in graphene 3d-printed electrodes via thermal annealing: Toward nitroaromatic explosives sensing. ACS Appl. Mater. Interfaces. 2019;11:35371–35375. doi: 10.1021/acsami.9b06683. PubMed DOI
Kalinke C., Neumsteir N.V., Aparecido G.D., Ferraz T.V.D., dos Santos P.L., Janegitz B.C., Bonacin J.A. Comparison of activation processes for 3d printed pla-graphene electrodes: Electrochemical properties and application for sensing of dopamine. Analyst. 2020;145:1207–1218. doi: 10.1039/C9AN01926J. PubMed DOI
Redondo E., Munoz J., Pumera M. Green activation using reducing agents of carbon-based 3d printed electrodes: Turning good electrodes to great. Carbon. 2021;175:413–419. doi: 10.1016/j.carbon.2021.01.107. DOI
Wirth D.M., Sheaff M.J., Waldman J.V., Symcox M.P., Whitehead H.D., Sharp J.D., Doerfler J.R., Lamar A.A., LeBlanc G. Electrolysis activation of fused-filament-fabrication 3d-printed electrodes for electrochemical and spectroelectrochemical analysis. Anal. Chem. 2019;91:5553–5557. doi: 10.1021/acs.analchem.9b01331. PubMed DOI
Browne M.P., Novotny F., Sofer Z., Pumera M. 3d printed graphene electrodes’ electrochemical activation. ACS App. Mat. Interf. 2018;10:40294–40301. doi: 10.1021/acsami.8b14701. PubMed DOI
Manzanares-Palenzuela C.L., Hermanova S., Sofer Z., Pumera M. Proteinase- sculptured 3d-printed graphene/polylactic acid electrodes as potential biosensing platforms: Towards enzymatic modeling of 3d-printed structures dagger. Nanoscale. 2019;11:12124–12131. doi: 10.1039/C9NR02754H. PubMed DOI
Fischer J., Barek J., Yosypchuk B., Navratil T. Voltammetric determination of trace amounts of 2-methyl-4,6-dinitrophenol at a silver solid amalgam electrode. Electroanalysis. 2006;18:127–130. doi: 10.1002/elan.200503366. DOI
Erokhin K.S., Gordeev E.G., Ananikov V.P. Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3d printing applications. Sci. Rep. 2019;9:20177. doi: 10.1038/s41598-019-56350-w. PubMed DOI PMC
Barek J., Fischer J., Navratil T., Peckova K., Yosypchuk B., Zima J. Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis. 2007;19:2003–2014. doi: 10.1002/elan.200703918. DOI
Navratil T., Yosypchuk B., Barek J. A multisensor for electrochemical sequential autonomous automatic measurements. Chem. Anal.-Warsaw. 2009;54:3–17.
Lyu S.P., Untereker D. Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 2009;10:4033–4065. doi: 10.3390/ijms10094033. PubMed DOI PMC
3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors
3D Printed Platform for Impedimetric Sensing of Liquids and Microfluidic Channels