Applicability of Selected 3D Printing Materials in Electrochemistry

. 2022 May 07 ; 12 (5) : . [epub] 20220507

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35624610

Grantová podpora
Czech Science Foundation Czech Science Foundation
SVV260560 Charles University - Specific University Research
373521 Grant Agency of the Charles University

This manuscript investigates the chemical and structural stability of 3D printing materials (3DPMs) frequently used in electrochemistry. Four 3D printing materials were studied: Clear photopolymer, Elastic photopolymer, PET filament, and PLA filament. Their stability, solubility, structural changes, flexibility, hardness, and color changes were investigated after exposure to selected organic solvents and supporting electrolytes. Furthermore, the available potential windows and behavior of redox probes in selected supporting electrolytes were investigated before and after the exposure of the 3D-printed objects to the electrolytes at various working electrodes. Possible electrochemically active interferences with an origin from the 3DPMs were also monitored to provide a comprehensive outline for the use of 3DPMs in electrochemical platform manufacturing.

Zobrazit více v PubMed

Cardoso R.M., Kalinke C., Rocha R.G., dos Santos P.L., Rocha D.P., Oliveira P.R., Janegitz B.C., Bonacin J.A., Richter E.M., Munoz R.A.A. Additive-manufactured (3d-printed) electrochemical sensors: A critical review. Anal. Chim. Acta. 2020;1118:73–91. doi: 10.1016/j.aca.2020.03.028. PubMed DOI

Escobar J.G., Vaneckova E., Lachmanova S.N., Vivaldi F., Heyda J., Kubista J., Shestivska V., Spanel P., Schwarzova-Peckova K., Rathousky J., et al. The development of a fully integrated 3d printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine. Electrochim. Acta. 2020;360:136984. doi: 10.1016/j.electacta.2020.136984. PubMed DOI PMC

Da Silveira G.D., Quero R.F., Bressan L.P., Bonacin J.A., de Jesus D.P., da Silva A.F. Ready-to-use 3d-printed electrochemical cell for in situ voltammetry of immobilized microparticles and Raman spectroscopy. Anal. Chim. Acta. 2021;1141:57–62. doi: 10.1016/j.aca.2020.10.023. PubMed DOI

Vaneckova E., Bousa M., Lachmanova S.N., Rathousky J., Gal M., Sebechlebska T., Kolivoska V. 3d printed polylactic acid/carbon black electrodes with nearly ideal electrochemical behaviour. J. Electroanal. Chem. 2020;857:113745. doi: 10.1016/j.jelechem.2019.113745. DOI

Sans V. Emerging trends in flow chemistry enabled by 3d printing: Robust reactors, biocatalysis and electrochemistry. Curr. Opin. Green Sustain. Chem. 2020;25:100367. doi: 10.1016/j.cogsc.2020.100367. DOI

Abdalla A., Patel B.A. 3d-printed electrochemical sensors: A new horizon for measurement of biomolecules. Curr. Opin. Electrochem. 2020;20:78–81. doi: 10.1016/j.coelec.2020.04.009. DOI

Hamzah H.H., Shafiee S.A., Abdalla A., Patel B.A. 3d printable conductive materials for the fabrication of electrochemical sensors: A mini review. Electrochem. Commun. 2018;96:27–31. doi: 10.1016/j.elecom.2018.09.006. DOI

Vaneckova E., Bousa M., Sokolova R., Moreno-Garcia P., Broekmann P., Shestivska V., Rathousky J., Gal M., Sebechlebska T., Kolivoska V. Copper electroplating of 3d printed composite electrodes. J. Electroanal. Chem. 2020;858:113763. doi: 10.1016/j.jelechem.2019.113763. DOI

Waseem M., Salah B., Habib T., Saleem W., Abas M., Khan R., Ghani U., Siddiqi M.U.R. Multi-response optimization of tensile creep behavior of pla 3d printed parts using categorical response surface methodology. Polymers. 2020;12:2962. doi: 10.3390/polym12122962. PubMed DOI PMC

Kumar M.B., Sathiya P. Methods and materials for additive manufacturing: A critical review on advancements and challenges. Thin-Walled Struct. 2021;159:107228. doi: 10.1016/j.tws.2020.107228. DOI

Alghamdi S.S., John S., Choudhury N.R., Dutta N.K. Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers. 2021;13:753. doi: 10.3390/polym13050753. PubMed DOI PMC

Junpha J., Wisitsoraat A., Prathumwan R., Chaengsawang W., Khomungkhun K., Subannajui K. Electronic tongue and cyclic voltammetric sensors based on carbon nanotube/polylactic composites fabricated by fused deposition modelling 3d printing. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020;117:111319. doi: 10.1016/j.msec.2020.111319. PubMed DOI

Choinska M., Hrdlicka V., Sestakova I., Navratil T. Voltammetric determination of heavy metals in honey bee venom using hanging mercury drop electrode and pla/carbon conductive filament for 3d printer. Monatsh. Chem. 2021;152:35–41. doi: 10.1007/s00706-020-02725-z. PubMed DOI PMC

Dixit C.K., Kadimisetty K., Rusling J. 3d-printed miniaturized fluidic tools in chemistry and biology. TrAC-Trends Anal. Chem. 2018;106:37–52. doi: 10.1016/j.trac.2018.06.013. PubMed DOI PMC

Stansbury J.W., Idacavage M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016;32:54–64. doi: 10.1016/j.dental.2015.09.018. PubMed DOI

Ambrosi A., Pumera M. 3d-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016;45:2740–2755. doi: 10.1039/C5CS00714C. PubMed DOI

Lee J.Y., An J., Chua C.K. Fundamentals and applications of 3d printing for novel materials. Appl. Mater. Today. 2017;7:120–133. doi: 10.1016/j.apmt.2017.02.004. DOI

Parra-Cabrera C., Achille C., Kuhn S., Ameloot R. 3d printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018;47:209–230. doi: 10.1039/C7CS00631D. PubMed DOI

Xing D., Chen L., Ma Q., Hao B., Gutnikov S.I., Lazoryak B.I., Mader E., Ma P.C. What happens to glass fiber under extreme chemical conditions? J. Non-Cryst. Solids. 2020;548:120331. doi: 10.1016/j.jnoncrysol.2020.120331. DOI

Gu H. Tensile behaviours of some high performance filaments after naoh treatment. Mater. Des. 2008;29:1893–1896. doi: 10.1016/j.matdes.2008.04.025. DOI

Heikkinen I.T.S., Kauppinen C., Liu Z.J., Asikainen S.M., Spoljaric S., Seppala J.V., Savin H., Pearce J.M. Chemical compatibility of fused filament fabrication-based 3-d printed components with solutions commonly used in semiconductor wet processing. Addit. Manuf. 2018;23:99–107. doi: 10.1016/j.addma.2018.07.015. DOI

Salentijn G.I.J., Oomen P.E., Grajewski M., Verpoorte E. Fused deposition modeling 3d printing for (bio)analytical device fabrication: Procedures, materials, and applications. Anal. Chem. 2017;89:7053–7061. doi: 10.1021/acs.analchem.7b00828. PubMed DOI PMC

IUPAC Compendium of Analytical Nomenclature. [(accessed on 26 November 2021)]. Available online: https://media.iupac.org/publications/analytical_compendium/

Novotny F., Urbanova V., Plutnar J., Pumera M. Preserving fine structure details and dramatically enhancing electron transfer rates in graphene 3d-printed electrodes via thermal annealing: Toward nitroaromatic explosives sensing. ACS Appl. Mater. Interfaces. 2019;11:35371–35375. doi: 10.1021/acsami.9b06683. PubMed DOI

Kalinke C., Neumsteir N.V., Aparecido G.D., Ferraz T.V.D., dos Santos P.L., Janegitz B.C., Bonacin J.A. Comparison of activation processes for 3d printed pla-graphene electrodes: Electrochemical properties and application for sensing of dopamine. Analyst. 2020;145:1207–1218. doi: 10.1039/C9AN01926J. PubMed DOI

Redondo E., Munoz J., Pumera M. Green activation using reducing agents of carbon-based 3d printed electrodes: Turning good electrodes to great. Carbon. 2021;175:413–419. doi: 10.1016/j.carbon.2021.01.107. DOI

Wirth D.M., Sheaff M.J., Waldman J.V., Symcox M.P., Whitehead H.D., Sharp J.D., Doerfler J.R., Lamar A.A., LeBlanc G. Electrolysis activation of fused-filament-fabrication 3d-printed electrodes for electrochemical and spectroelectrochemical analysis. Anal. Chem. 2019;91:5553–5557. doi: 10.1021/acs.analchem.9b01331. PubMed DOI

Browne M.P., Novotny F., Sofer Z., Pumera M. 3d printed graphene electrodes’ electrochemical activation. ACS App. Mat. Interf. 2018;10:40294–40301. doi: 10.1021/acsami.8b14701. PubMed DOI

Manzanares-Palenzuela C.L., Hermanova S., Sofer Z., Pumera M. Proteinase- sculptured 3d-printed graphene/polylactic acid electrodes as potential biosensing platforms: Towards enzymatic modeling of 3d-printed structures dagger. Nanoscale. 2019;11:12124–12131. doi: 10.1039/C9NR02754H. PubMed DOI

Fischer J., Barek J., Yosypchuk B., Navratil T. Voltammetric determination of trace amounts of 2-methyl-4,6-dinitrophenol at a silver solid amalgam electrode. Electroanalysis. 2006;18:127–130. doi: 10.1002/elan.200503366. DOI

Erokhin K.S., Gordeev E.G., Ananikov V.P. Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3d printing applications. Sci. Rep. 2019;9:20177. doi: 10.1038/s41598-019-56350-w. PubMed DOI PMC

Barek J., Fischer J., Navratil T., Peckova K., Yosypchuk B., Zima J. Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis. 2007;19:2003–2014. doi: 10.1002/elan.200703918. DOI

Navratil T., Yosypchuk B., Barek J. A multisensor for electrochemical sequential autonomous automatic measurements. Chem. Anal.-Warsaw. 2009;54:3–17.

Lyu S.P., Untereker D. Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 2009;10:4033–4065. doi: 10.3390/ijms10094033. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...