3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2023/003
Tomas Bata University in Zlín
FEKT-S-20-6215
Brno University of Technology
PubMed
37571598
PubMed Central
PMC10422458
DOI
10.3390/s23156817
PII: s23156817
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, FDM, PLA, capillary, chemiresistive gas sensors, foods,
- Publikační typ
- časopisecké články MeSH
This paper discusses the possible use of 3D fused deposition modeling (FDM) to fabricate capillaries for low-cost chemiresistive gas sensors that are often used in various applications. The disadvantage of these sensors is low selectivity, but 3D printed FDM capillaries have the potential to increase their selectivity. Capillaries with 1, 2 and 3 tiers with a length of 1.5 m, 3.1 m and 4.7 m were designed and manufactured. Food and goods available in the general trade network were used as samples (alcohol, seafood, chicken thigh meat, acetone-free nail polish remover and gas from a gas lighter) were also tested. The "Vodka" sample was used as a standard for determining the effect of capillary parameters on the output signal of the MiCS6814 sensor. The results show the shift of individual parts of the signal in time depending on the parameters of the capillary and the carrier air flow. A three-tier capillary was chosen for the comparison of gas samples with each other. The graphs show the differences between individual samples, not only in the height of the output signal but also in its time characteristic. The tested 3D printed FDM capillaries thus made it possible to characterize the output response by also using an inexpensive chemiresistive gas sensor in the time domain.
Zobrazit více v PubMed
SGX Sensortech MiCS-6814, 1143 rev 8. [(accessed on 6 July 2023)]. Data Sheet. Available online: https://www.sgxsensortech.com/content/uploads/2015/02/1143_Datasheet-MiCS-6814-rev-8.pdf.
Khatri D., Gladstone K., Joysar Y., Gupta P., Mehendale N. Design and Development of an Alcohol Detector Employing a MQ-3 Gas Sensor and an 8051 Micro-Controller. [(accessed on 27 July 2023)];SSRN. 2023 doi: 10.2139/ssrn.4043898. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4043898. DOI
Hanwei Electronics CO. Technical Data MQ-3 Gas Sensor. [(accessed on 27 July 2023)]. Data Sheet. Available online: https://www.sparkfun.com/datasheets/Sensors/MQ-3.pdf.
Preedy V., Rodríguez Méndez M.L. Electronic Noses and Tongues in Food Science. 1st ed. Academic Press; Tokyo, Japan: 2016.
Nesterenko P.N. 3D printing in analytical chemistry: Current state and future. Pure Appl. Chem. 2020;92:1341–1355. doi: 10.1515/pac-2020-0206. DOI
Valino A.D., Dizon J.R.C., Espera A.H., Chen Q., Messman J.M., Advincula R.C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 2019;98:101162. doi: 10.1016/j.progpolymsci.2019.101162. DOI
Choinska M., Hrdlička V., Dejmkova H., Fischer J.A., Míka L., Vaněčková E., Kolivoška V., Navrátil T. Applicability of Selected 3D Printing Materials in Electrochemistry. Biosensors. 2022;12:308. doi: 10.3390/bios12050308. PubMed DOI PMC
Ambrosi A., Bonanni A. How 3D printing can boost advances in analytical and bioanalytical chemistry. Mikrochim. Acta. 2021;188:265. doi: 10.1007/s00604-021-04901-2. PubMed DOI
Gupta V., Beirne S., Nesterenko P.N., Paull B. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases. Anal. Chem. 2018;90:1186–1194. doi: 10.1021/acs.analchem.7b03778. PubMed DOI
Salmean C., Dimartino S. 3D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development in Liquid Chromatography. Chromatographia. 2019;82:443–463. doi: 10.1007/s10337-018-3671-5. DOI
Phyo S., Choi S.H., Jang J., Choi S., Lee J.W. A 3D-printed metal column for micro gas chromatography. Lab Chip. 2020;20:3435–3444. doi: 10.1039/D0LC00540A. PubMed DOI
Lucklum F., Janssen S., Lang W., Vellekoop M.J. Miniature 3D Gas Chromatography Columns with Integrated Fluidic Connectors Using High-resolution Stereolithography Fabrication. Procedia Eng. 2015;120:703–706. doi: 10.1016/j.proeng.2015.08.761. DOI
Chua C.K., Yeong W.Y., An J. Special Issue: 3D Printing for Biomedical Engineering. Materials. 2017;10:243. doi: 10.3390/ma10030243. PubMed DOI PMC
Kodama M., Ishigaki R., Basher S., Sasaki H., Saito A., Makino M., Khosla A., Kawakami M., Furukawa H. 3D printing of foods. Proc. SPIE. 2018;10597:1059718.
Izdebska J., Zolek-Tryznowska Z. 3D food printing—Facts and future. Agro Food Ind. Hi Tech. 2016;27:33–37.
Palenzuela C.L.M., Pumera M. (Bio)Analytical chemistry enabled by 3D printing: Sensors and biosensors. Trends Analyt. Chem. 2018;103:110–118. doi: 10.1016/j.trac.2018.03.016. DOI
Xu Y.Y., Wu X.Y., Guo X., Kong B., Zhang M., Qian X., Mi S.L., Sun W. The Boom in 3D-Printed Sensor Technology. Sensors. 2017;17:1166. doi: 10.3390/s17051166. PubMed DOI PMC
Simonenko N.P., Fisenko N.A., Fedorov F.S., Simonenko T.L., Mokrushin A.S., Simonenko E.P., Korotcenkov G., Sysoev V.V., Sevastyanov V.G., Kuznetsov N.T. Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. Sensors. 2022;22:3473. doi: 10.3390/s22093473. PubMed DOI PMC
Sandron S., Heery B., Gupta V., Collins D., Nesterenko E.P., Nesterenko P.N., Talebi M., Beirne S., Thompson F., Wallace G.G., et al. 3D printed metal columns for capillary liquid chromatography. Analyst. 2014;139:6343–6347. doi: 10.1039/C4AN01476F. PubMed DOI
Grob R.L., Barry E.F. Modern Practice of Gas Chromatography. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 2004.
Shimadzu Gas Chromatography (GC) [(accessed on 27 July 2023)]. Available online: https://www.shimadzu.eu/tech-support/fundamentals-gc/gc.
Prusa Polymers a.s. Prusament PLA od Prusa Polymers (in Czech, Prusament PLA from Prusa Polymers) [(accessed on 6 July 2023)]. Data Sheet. Available online: https://prusament.com/media/2022/10/PLA_Prusament_TDS_2021_10_CS.pdf.
Feiner G. Meat Products Handbook—Practical Science and Technology. 1st ed. Woodhead Publishing; Sawston, UK: 2006. pp. 1–21.
Görner F., Valík L. Aplikovaná Mikrobiológia Požívatín (in Slovak, Applied Food Microbiology) 1st ed. Malé Centrum; Bratislava, Slovakia: 2004.
Beneš J. Infekční Lékařství (in Czech, Infectious Diseases) 1st ed. Galén; Praha, Czech Republic: 2009.
ATC Import s.r.o. Royce Plyn do Zapalovačů (in Czech, Royce Gas for Lighters) [(accessed on 6 July 2023)]. Safety Data Sheet. Available online: https://www.geco.cz/getmedia/bbfa07cb-17b9-44e4-87d8-e35884b7fc84/file.
Zaidi N.A., Tahir M., Vellekoop M.J., Lang W. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors. 2017;17:2283. doi: 10.3390/s17102283. PubMed DOI PMC
Shaalan N.M., Ahmed F., Saber O., Kumar S. Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors. Chemosensors. 2022;10:338. doi: 10.3390/chemosensors10080338. DOI
Ray B. Fundamental Food Microbiology. 3rd ed. CRC Press; London, UK: 2005. pp. 67–124.
Casaburi A., Piombino P., Nychas G.J., Villani F., Ercolini D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015;45:83–102. doi: 10.1016/j.fm.2014.02.002. PubMed DOI
Kartika V., Rivai M., Purwanto D. Spoiled meat classification using semiconductor gas sensors, image processing and neural network; Proceedings of the 2018 International Conference on Information and Communications Technology (ICOIACT); Yogyakarta, Indonesia. 6–7 March 2018.
Raudiene E., Darius G., Vinauskienė R., Eisinaite V., Balčiūnas G., Dobiliene J., Jūrienė L. Rapid evaluation of fresh chicken meat quality by electronic nose. Czech J. Food Sci. 2018;36:420–426. doi: 10.17221/419/2017-CJFS. DOI
Benabdellah N., Bourhaleb M., Benazzi M., Nasri M., Dahbi S. The Detection of Smell in Spoiled Meat by TGS822 Gas Sensor for an Electronic Nose Used in Rotten Food. Adv. Intell. 2017;520:279–286.
Adamek M., Zvonkova M., Buresova I., Buran M., Sevcikova V., Sebestikova R., Adamkova A., Skowronkova N., Mlcek J. Use of a Thermodynamic Sensor in Monitoring Fermentation Processes in Gluten-Free Dough Proofing. Sensors. 2023;23:534. doi: 10.3390/s23010534. PubMed DOI PMC
Andre R.S., Mercante L.A., Facure M.H.M., Sanfelice R.C., Fugikawa-Santos L., Swager T.M., Correa D.S. Recent Progress in Amine Gas Sensors for Food Quality Monitoring: Novel Architectures for Sensing Materials and Systems. ACS Sens. 2022;7:2104–2131. doi: 10.1021/acssensors.2c00639. PubMed DOI
Zhao Y., Shi R., Bian X., Zhou C., Zhao Y., Zhang S., Wu F., Waterhouse G.I.N., Wu L.Z., Tung C.H., et al. Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH3 Production Rates? Adv. Sci. 2019;6:1802109. doi: 10.1002/advs.201802109. PubMed DOI PMC
Gustavsson J., Cederberg C., Sonesson U., van Otterdijk R., Meybeck A. Global Food Losses and Food Waste. Extent, Causes and Prevention; Proceedings of the International Save Food Congress (Interpack 2011); Düsseldorf, Germany. 12–18 May 2011.
Janssen S., Schmitt K., Blanke M., Bauersfeld M.L., Wlenstein J., Lang W. Ethylene detection in fruit supply chains. Philos. Trans. R. Soc. A. 2014;372:20130311. doi: 10.1098/rsta.2013.0311. PubMed DOI PMC
Janssen S., Tessmann T., Lang W. High sensitive and selective ethylene measurement by using a large-capacity-on-chip preconcentrator device. Sens. Actuators B Chem. 2014;197:405–413. doi: 10.1016/j.snb.2014.02.001. DOI
Compact 3D-Printed Unit for Separation of Simple Gas Mixtures Combined with Chemiresistive Sensors