Optimizing Low-Cost Gas Analysis with a 3D Printed Column and MiCS-6814 Sensor for Volatile Compound Detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2024/006
Tomas Bata University in Zlin
RVO/CEBIA/2024/001
Tomas Bata University in Zlin
FEKT-S-23-8162
Brno University of Technology in Brno
RP_CPS_2024_28_005
Ministry of Education, Youth and Sports of the Czech Republic-DKRVO
MZE-RO0723
Ministry of Agriculture of the Czech Republic
PubMed
39460075
PubMed Central
PMC11511080
DOI
10.3390/s24206594
PII: s24206594
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, capillary, chemiresistive gas sensors, ethanol detection, methanol detection, sustainability,
- Publikační typ
- časopisecké články MeSH
This paper explores an application of 3D printing technology on the food industry. Since its inception in the 1980s, 3D printing has experienced a huge rise in popularity. This study uses cost-effective, flexible, and sustainable components that enable specific features of certain gas chromatography. This study aims to optimize the process of gas detection using a 3D printed separation column and the MiCS-6814 sensor. The principle of the entire device is based on the idea of utilizing a simple capillary chromatographic column manufactured by 3D printing for the separation of samples into components prior to their measurement using inexpensive chemiresistive sensors. An optimization of a system with a 3D printed PLA block containing a capillary, a mixing chamber, and a measuring chamber with a MiCS-6814 sensor was performed. The optimization distributed the sensor output signal in the time domain so that it was possible to distinguish the peak for the two most common alcohols, ethanol and methanol. The paper further describes some optimization types and their possibilities.
Zobrazit více v PubMed
Sahana V.W., Thampi G.T. 3D Printing Technology in Industry; Proceedings of the 2nd International Conference on Inventive Systems and Control (ICISC); Coimbatore, India. 19–20 January 2018.
Janigova N., Gajdziok J., Vetchy D. Biomedical Use of 3D Printing (orig. in Slovak, Biomedicínske použitie 3D tlače) Chem. Listy. 2021;115:356–362.
Noor M.N.M., Leow M.L., Lai W.H., Hon Y.K., Tiong L.L., Chern P.M. Research landscape on 3D printing applications in healthcare within South-east Asian countries: A systematic scoping review protocol. BMJ Open. 2022;12:e065546. doi: 10.1136/bmjopen-2022-065546. PubMed DOI PMC
Zhou S., Zhao Y., Xun Y., Wei Z., Yang Y., Yan W., Ding J. Programmable and modularized gas sensor integrated by 3D printing. Chem. Rev. 2024;124:3608–3643. doi: 10.1021/acs.chemrev.3c00853. PubMed DOI
Song D., Chen X., Wang M., Wu Z., Xiao X. 3D-printed flexible sensors for food monitoring. Chem. Eng. J. 2023;474:146011. doi: 10.1016/j.cej.2023.146011. DOI
Muhamad O., Khairunisak R., Nadhir W., Hairul H. Recent progress of conductive 3D-printed electrodes based upon polymers/carbon nanomaterials using a fused deposition modelling (FDM) method as emerging electrochemical sensing devices. RSC Adv. 2021;11:16557–16571. doi: 10.1039/D1RA01987B. PubMed DOI PMC
Moleirinho M.G., Feast S., Moreira A.S., Silva R.J.S., Alves P.M., Carrondo M.J.T., Huber T., Fee C., Peixoto C. 3D-printed ordered bed structures for chromatographic purification of enveloped and non-enveloped viral particles. Sep. Purif. Technol. 2021;254:117681. doi: 10.1016/j.seppur.2020.117681. DOI
Lee J.Y., An J., Chua C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today. 2017;7:120–133. doi: 10.1016/j.apmt.2017.02.004. DOI
Poologasundarampillai G., Nommeots-Nomm A. Materials for 3D printing in medicine: Metals, polymers, ceramics, hy-drogel. In: Kalaskar D.M., editor. 3D Printing in Medicine. Woodhead Publishing; Sawston, UK: 2017. pp. 43–71. DOI
Zhou L.Y., Fu J., He Y. A Review of 3D Printing Technologies for Soft Polymer Materials. Adv. Funct. Mater. 2020;30:2000187. doi: 10.1002/adfm.202000187. DOI
Phyo S., Choi S., Jang J., Choi S., Lee J. A 3D-printed metal column for micro gas chromatography. Lab Chip. 2020;20:3435–3444. doi: 10.1039/D0LC00540A. PubMed DOI
Meng H., Wei Y., Feng L. A microchip gas chromatography column assembly with a 3D metal printing micro column oven and a flexible stainless-steel column. J. Chromatogr. A. 2024;1729:465036. doi: 10.1016/j.chroma.2024.465036. PubMed DOI
Nawada S., Budel T. A Novel 3D-Printing Method to Create Liquid Chromatography Columns. LCGC Eur. 2021;34:381–386.
Salmean C., Dimartino S. 3D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development in Liquid Chromatography. Chromatographia. 2019;82:443–463. doi: 10.1007/s10337-018-3671-5. DOI
Adamek M., Mlcek J., Skowronkova N., Zvonkova M., Jasso M., Adamkova A., Skacel J., Buresova I., Sebestikova R., Cernekova M., et al. 3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors. Sensors. 2023;23:6817. doi: 10.3390/s23156817. PubMed DOI PMC
Zvonkova M., Adamek M., Skowronkova N., Dlabaja S., Matyas J., Jasso M., Adamkova A., Mlcek J., Salek R.N., Buran M. Compact 3D-Printed Unit for Separation of Simple Gas Mixtures Combined with Chemiresistive Sensors. Sensors. 2024;24:4391. doi: 10.3390/s24134391. PubMed DOI PMC
SGX Sensortech MiCS-6814, 1143 Rev 8. Data Sheet. [(accessed on 15 July 2024)]. Available online: https://www.sgxsensortech.com/content/uploads/2015/02/1143_Datasheet-MiCS-6814-rev-8.pdf.
van den Broek J., Abegg S., Pratsinis S.E., Güntner A.T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019;10:4220. doi: 10.1038/s41467-019-12223-4. PubMed DOI PMC
Che Harun F.K., Taylor J.E., Covington J.A., Gardner J.W. An electronic nose employing dual-channel odour separation columns with large chemosensor arrays for advanced odour discrimination. Sens. Actuators B Chem. 2009;141:134–140. doi: 10.1016/j.snb.2009.05.036. DOI
Joseph J.A., Akkermans S., Van Impe J.F.M. Processing Method for the Quantification of Methanol and Ethanol from Biore-actor Samples Using Gas Chromatography–Flame Ionization Detection. ACS Omega. 2022;7:24121–24133. doi: 10.1021/acsomega.2c00055. PubMed DOI PMC
Itterheimova P., Kuban P. An open source 3D printed autosampler for capillary electrophoresis. Anal. Chim. Acta. 2023;1279:341832. doi: 10.1016/j.aca.2023.341832. PubMed DOI
Radi, Ciptohadijoyo S., Litananda W.S., Rivai M., Purnomo M.H. Electronic nose based on partition column integrated with gas sensor for fruit identification and classification. Comput. Electron. Agric. 2016;121:429–435. doi: 10.1016/j.compag.2015.11.013. DOI
Hayasaka T., Lin A., Copa V.C., Lopez L.P., Jr., Loberternos R.A., Ballesteros L.I.M., Kubota Y., Liu Y., Salvador A.A., Lin L. An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol. Microsyst Nanoeng. 2020;6:50. doi: 10.1038/s41378-020-0161-3. PubMed DOI PMC
Palkowitsh J. Nitrogen Gas in the Food Process. Compressed Air Best Practices®, 2018. [(accessed on 15 July 2024)]. Available online: https://www.airbestpractices.com/industries/food/nitrogen-gas-food-process.
Zeleny P. Forty-Eight Dead, Dozens Accused. Ten Years Have Passed Since the Methanol Case (orig. in Czech, Osmactyricet mrtvych, desitky obvinenych. Od metanolove kauzy uplynulo deset let. CT24, 2022. [(accessed on 15 July 2024)]. Available online: https://ct24.ceskatelevize.cz/clanek/domaci/osmactyricet-mrtvych-desitky-obvinenych-od-metanolove-kauzy-uplynulo-deset-let-16710.
Kar P., Pradhan N.C., Adhikari B. Application of sulfuric acid doped poly (m-aminophenol) as aliphatic alcohol vapor sensor material. Sens. Actuators B Chem. 2009;140:525–531. doi: 10.1016/j.snb.2009.05.013. DOI
King H.S., Bell A.C. The detection of methanol in the presence of ethyl alcohol. Proc. Nova Scotian Inst. Sci. 1932;18:11–13.
Liu W.-H., Yang W., Wu X.-Q., Lin Z.-X. Direct determination of ethanol by laser Raman spectra with internal standard method. Fenxi Huaxue/Chin. J. Anal. Chem. 2007;35:416–418.
Raman Spectrometer. [(accessed on 15 July 2024)]. Available online: https://www.labx.com/product/raman-spectrometer.
Hashemi S.A., Bahrani S., Mousavi S.M., Omidifar N., Arjmand M., Lankarani K.B., Shokripour M., Ramakrishna S. Differentiable detection of ethanol/methanol in biological fluids using prompt graphene-based electrochemical nanosensor coupled with catalytic complex of nickel oxide/8-hydroxyquinoline. Anal. Chim. Acta. 2022;1194:339407. doi: 10.1016/j.aca.2021.339407. PubMed DOI
Barrios C.A. Scotch Tape Optical Vapor Sensor for Ethanol–Methanol Mixtures. Sensors. 2019;19:5381. doi: 10.3390/s19245381. PubMed DOI PMC