• This record comes from PubMed

Compact 3D-Printed Unit for Separation of Simple Gas Mixtures Combined with Chemiresistive Sensors

. 2024 Jul 06 ; 24 (13) : . [epub] 20240706

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA/FT/2024/006 Tomas Bata University in Zlin

Inexpensive chemiresistive sensors are often insufficiently selective as they are sensitive to multiple components of the gas mixture at the same time. One solution would be to insert a device in front of the sensor that separates the measured gas mixture and possibly isolates the unwanted components. This study focused on the fabrication and characterization of a compact unit, which was fabricated by 3D printing, for the separation and detection of simple gas mixtures. The capillary, the basic part of the compact unit, was 4.689 m long and had a diameter of 0.7 mm. The compact unit also contained a mixing chamber on the inlet side and a measuring chamber with a MiCS-6814 sensor on the outlet side. Mixtures of ethanol and water at different concentrations were chosen for characterization. The measured calibration curve was found to have a reliability of R2 = 0.9941. The study further addressed the elements of environmental friendliness of the materials used and their sustainability.

See more in PubMed

Xu Y.Y., Wu X.Y., Guo X., Kong B., Zhang M., Qian X., Mi S.L., Sun W. The Boom in 3D-Printed Sensor Technology. Sensors. 2017;17:1166. doi: 10.3390/s17051166. PubMed DOI PMC

Zhou S., Zhao Y., Xun Y., Wei Z., Yang Y., Yan W., Ding J. Programmable and modularized gas sensor integrated by 3D printing. Chem. Rev. 2024;124:3608–3643. doi: 10.1021/acs.chemrev.3c00853. PubMed DOI

Simonenko N.P., Fisenko N.A., Fedorov F.S., Simonenko T.L., Mokrushin A.S., Simonenko E.P., Korotcenkov G., Sysoev V.V., Sevastyanov V.G., Kuznetsov N.T. Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. Sensors. 2022;22:3473. doi: 10.3390/s22093473. PubMed DOI PMC

Cheng L., Liu Y.-B., Meng Q.-H. A Novel E-Nose Chamber Design for VOCs Detection in Automobiles; Proceedings of the 2020 39th Chinese Control Conference (CCC); Shenyang, China. 27–29 July 2020; pp. 6055–6060.

de Souza K.R., Osório J.H., Carvalho J.B., Lima B.M., Cordeiro C.M.B. 3D Printing Technology for Tapered Optical Fiber Protection With Gas Sensing Possibilities. Photonic Sens. 2020;10:298–305. doi: 10.1007/s13320-020-0592-3. DOI

Ma Y., Kaczynski J., Ranacher C., Roshanghias A., Zauner M., Abasahl B. Nano-Porous Aluminum Oxide Membrane as Filtration Interface for Optical Gas Sensor Packaging. Microelectron. Eng. 2018;198:29–34. doi: 10.1016/j.mee.2018.06.013. DOI

Adamek M., Mlcek J., Skowronkova N., Zvonkova M., Jasso M., Adamkova A., Skacel J., Buresova I., Sebestikova R., Cernekova M., et al. 3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors. Sensors. 2023;23:6817. doi: 10.3390/s23156817. PubMed DOI PMC

Trivedi A.K., Gupta M.L., Singh H. PLA based biocomposites for sustainable products: A review. Adv. Ind. Eng. Polym. Res. 2023;6:382–395. doi: 10.1016/j.aiepr.2023.02.002. DOI

Swetha T.K., Bora A., Mohanrasu K., Balaji P., Raja R., Ponnuchamy K., Muthusamy G., Arun A.P. A comprehensive review on polylactic acid (PLA)—Synthesis, processing and application in food packaging. Int. J. Biol. Macromol. 2023;234:123715. doi: 10.1016/j.ijbiomac.2023.123715. PubMed DOI

Rezvani Ghomi E., Khosravi F., Saedi Ardahaei A., Dai Y., Neisiany R.E., Foroughi F., Wu M., Das O., Ramakrishna S. The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers. 2021;13:1854. doi: 10.3390/polym13111854. PubMed DOI PMC

Zhao P., Rao C., Gu F., Sharmin N., Fu J. Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. J. Clean. Prod. 2018;197:1046–1055. doi: 10.1016/j.jclepro.2018.06.275. DOI

Elsawy M.A., Kim K., Park J.-W., Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 2017;79:1346–1352. doi: 10.1016/j.rser.2017.05.143. DOI

Piemonte V., Sabatini S., Gironi F. Chemical recycling of PLA: A great opportunity towards the sustainable development? J. Polym. Environ. 2013;21:640–647. doi: 10.1007/s10924-013-0608-9. DOI

Hidalgo-Carvajal D., Muñoz Á.H., Garrido-González J.J., Carrasco-Gallego R., Alcázar Montero V. Recycled PLA for 3D Printing: A Comparison of Recycled PLA Filaments from Waste of Different Origins after Repeated Cycles of Extrusion. Polymers. 2023;15:3651. doi: 10.3390/polym15173651. PubMed DOI PMC

Critical Environment Technologies Canada Inc. Electrochemical Gas Sensors & Factors Affecting Life Expectancy. [(accessed on 12 May 2024)]. Available online: https://www.critical-environment.com/about/cet-blog/expert-insights/electrochemical-gas-sensors-factors-affecting-life-expectancy.

Diamond D. Principles of Chemical and Biological Sensors. Wiley-Interscience; Hoboken, NJ, USA: 1998.

Wilson J.S. Sensor Technology Handbook. Newnes; Oxford, UK: 2005.

SGX Sensortech MiCS-6814, 1143 Rev 8. Data Sheet. [(accessed on 6 July 2023)]. Available online: https://www.sgxsensortech.com/content/uploads/2015/02/1143_Datasheet-MiCS-6814-rev-8.pdf.

Zaidi N.A., Tahir M., Vinayaka P.P., Lucklum F., Vellekoop M.J., Lang W. Detection of ethylene using gas chromatographic system. Procedia Eng. 2016;168:380–383. doi: 10.1016/j.proeng.2016.11.140. DOI

Zaidi N.A., Tahir M.W., Vellekoop M.J., Lang W. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors. 2017;17:2283. doi: 10.3390/s17102283. PubMed DOI PMC

Zaidi N.A., Tahir M.W., Vellekoop M.J., Lang W. Design of Novel Ceramic Preconcentrator and Integration in Gas Chromatographic System for Detection of Ethylene Gas from Ripening Bananas. Sensors. 2018;18:2589. doi: 10.3390/s18082589. PubMed DOI PMC

Van Den Broek J., Abegg S., Pratsinis S.E., Güntner A.T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019;10:4220. doi: 10.1038/s41467-019-12223-4. PubMed DOI PMC

Lachenmeier D.W. Advances in Food Authenticity Testing. Woodhead Publishing; Sawston, UK: 2016. Advances in the detection of the adulteration of alcoholic beverages including unrecorded alcohol; pp. 565–584.

Nekoukar Z., Zakariaei Z., Taghizadeh F., Musavi F., Banimostafavi E.S., Sharifpour A., Ghuchi N.E., Fakhar M., Tabaripour R., Safanavaei S. Methanol poisoning as a new world challenge: A review. Ann. Med. Surg. 2021;66:102445. doi: 10.1016/j.amsu.2021.102445. PubMed DOI PMC

Mika O.J., Weissmannova-Dolezalova H., Fišerová L. Mass methanol poisonings in the Czech Republic. Toxin Rev. 2014;33:101–106. doi: 10.3109/15569543.2014.883408. DOI

Zakharov S., Pelclová D., Urban P., Navrátil T., Diblík P., Kuthan P., Hubacek J.A., Miovský M., Klempíř J., Vaněčková M., et al. Czech mass methanol outbreak 2012: Epidemiology, challenges and clinical features. Clin. Toxicol. 2014;52:1013–1024. doi: 10.3109/15563650.2014.974106. PubMed DOI

Kamiloglu S. Authenticity and traceability in beverages. Food Chem. 2019;277:12–24. doi: 10.1016/j.foodchem.2018.10.091. PubMed DOI

Kimlinger M.J., Martin R.S. The Use of a 3D-printed Microfluidic Device and Pressure Mobilization for Integrating Capillary Electrophoresis with Electrochemical Detection. Electroanalysis. 2018;30:2241–2249. doi: 10.1002/elan.201800367. PubMed DOI PMC

Walczak R., Adamski K., Kubicki W. Inkjet 3D printed chip for capillary gel electrophoresis. Sens. Actuators B-Chem. 2018;261:474–480. doi: 10.1016/j.snb.2018.01.174. DOI

Esene J.E., Nasman P.R., Miner D.S., Nordin G.P., Woolley A.T. High-performance microchip electrophoresis separations of preterm birth biomarkers using 3D printed microfluidic devices. J. Chromatogr. A. 2023;1706:464242. doi: 10.1016/j.chroma.2023.464242. PubMed DOI PMC

Gupta V., Beirne S., Nesterenko P.N., Paull B. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases. Anal. Chem. 2018;90:1186–1194. doi: 10.1021/acs.analchem.7b03778. PubMed DOI

Sandron S., Heery B., Gupta V., Collins D.A., Nesterenko E.P., Nesterenko P.N., Talebi M., Beirne S., Thompson F., Wallace G.G., et al. 3D printed metal columns for capillary liquid chromatography. Analyst. 2014;139:6343–6347. doi: 10.1039/C4AN01476F. PubMed DOI

Phyo S., Choi S., Jang J., Choi S., Lee J. A 3D-printed metal column for micro gas chromatography. Lab Chip. 2020;20:3435–3444. doi: 10.1039/D0LC00540A. PubMed DOI

Selemani M.A., Martin R.S. Use of 3D printing to integrate microchip electrophoresis with amperometric detection. Anal. Bioanal. Chem. 2024;416:1–14. doi: 10.1007/s00216-024-05260-6. PubMed DOI

Mehta V., Rath S.N. 3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des. Manuf. 2021;4:311–343. doi: 10.1007/s42242-020-00112-5. DOI

Lucklum F., Janssen S., Lang W., Vellekoop M.J. Miniature 3D Gas Chromatography Columns with Integrated Fluidic Connectors Using High-resolution Stereolithography Fabrication. Procedia Eng. 2015;120:703–706. doi: 10.1016/j.proeng.2015.08.761. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...