Compact 3D-Printed Unit for Separation of Simple Gas Mixtures Combined with Chemiresistive Sensors
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA/FT/2024/006
Tomas Bata University in Zlin
PubMed
39001169
PubMed Central
PMC11244592
DOI
10.3390/s24134391
PII: s24134391
Knihovny.cz E-resources
- Keywords
- 3D printing, capillary, chemiresistive gas sensors, polylactic acid, sustainability,
- Publication type
- Journal Article MeSH
Inexpensive chemiresistive sensors are often insufficiently selective as they are sensitive to multiple components of the gas mixture at the same time. One solution would be to insert a device in front of the sensor that separates the measured gas mixture and possibly isolates the unwanted components. This study focused on the fabrication and characterization of a compact unit, which was fabricated by 3D printing, for the separation and detection of simple gas mixtures. The capillary, the basic part of the compact unit, was 4.689 m long and had a diameter of 0.7 mm. The compact unit also contained a mixing chamber on the inlet side and a measuring chamber with a MiCS-6814 sensor on the outlet side. Mixtures of ethanol and water at different concentrations were chosen for characterization. The measured calibration curve was found to have a reliability of R2 = 0.9941. The study further addressed the elements of environmental friendliness of the materials used and their sustainability.
See more in PubMed
Xu Y.Y., Wu X.Y., Guo X., Kong B., Zhang M., Qian X., Mi S.L., Sun W. The Boom in 3D-Printed Sensor Technology. Sensors. 2017;17:1166. doi: 10.3390/s17051166. PubMed DOI PMC
Zhou S., Zhao Y., Xun Y., Wei Z., Yang Y., Yan W., Ding J. Programmable and modularized gas sensor integrated by 3D printing. Chem. Rev. 2024;124:3608–3643. doi: 10.1021/acs.chemrev.3c00853. PubMed DOI
Simonenko N.P., Fisenko N.A., Fedorov F.S., Simonenko T.L., Mokrushin A.S., Simonenko E.P., Korotcenkov G., Sysoev V.V., Sevastyanov V.G., Kuznetsov N.T. Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. Sensors. 2022;22:3473. doi: 10.3390/s22093473. PubMed DOI PMC
Cheng L., Liu Y.-B., Meng Q.-H. A Novel E-Nose Chamber Design for VOCs Detection in Automobiles; Proceedings of the 2020 39th Chinese Control Conference (CCC); Shenyang, China. 27–29 July 2020; pp. 6055–6060.
de Souza K.R., Osório J.H., Carvalho J.B., Lima B.M., Cordeiro C.M.B. 3D Printing Technology for Tapered Optical Fiber Protection With Gas Sensing Possibilities. Photonic Sens. 2020;10:298–305. doi: 10.1007/s13320-020-0592-3. DOI
Ma Y., Kaczynski J., Ranacher C., Roshanghias A., Zauner M., Abasahl B. Nano-Porous Aluminum Oxide Membrane as Filtration Interface for Optical Gas Sensor Packaging. Microelectron. Eng. 2018;198:29–34. doi: 10.1016/j.mee.2018.06.013. DOI
Adamek M., Mlcek J., Skowronkova N., Zvonkova M., Jasso M., Adamkova A., Skacel J., Buresova I., Sebestikova R., Cernekova M., et al. 3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors. Sensors. 2023;23:6817. doi: 10.3390/s23156817. PubMed DOI PMC
Trivedi A.K., Gupta M.L., Singh H. PLA based biocomposites for sustainable products: A review. Adv. Ind. Eng. Polym. Res. 2023;6:382–395. doi: 10.1016/j.aiepr.2023.02.002. DOI
Swetha T.K., Bora A., Mohanrasu K., Balaji P., Raja R., Ponnuchamy K., Muthusamy G., Arun A.P. A comprehensive review on polylactic acid (PLA)—Synthesis, processing and application in food packaging. Int. J. Biol. Macromol. 2023;234:123715. doi: 10.1016/j.ijbiomac.2023.123715. PubMed DOI
Rezvani Ghomi E., Khosravi F., Saedi Ardahaei A., Dai Y., Neisiany R.E., Foroughi F., Wu M., Das O., Ramakrishna S. The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers. 2021;13:1854. doi: 10.3390/polym13111854. PubMed DOI PMC
Zhao P., Rao C., Gu F., Sharmin N., Fu J. Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. J. Clean. Prod. 2018;197:1046–1055. doi: 10.1016/j.jclepro.2018.06.275. DOI
Elsawy M.A., Kim K., Park J.-W., Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 2017;79:1346–1352. doi: 10.1016/j.rser.2017.05.143. DOI
Piemonte V., Sabatini S., Gironi F. Chemical recycling of PLA: A great opportunity towards the sustainable development? J. Polym. Environ. 2013;21:640–647. doi: 10.1007/s10924-013-0608-9. DOI
Hidalgo-Carvajal D., Muñoz Á.H., Garrido-González J.J., Carrasco-Gallego R., Alcázar Montero V. Recycled PLA for 3D Printing: A Comparison of Recycled PLA Filaments from Waste of Different Origins after Repeated Cycles of Extrusion. Polymers. 2023;15:3651. doi: 10.3390/polym15173651. PubMed DOI PMC
Critical Environment Technologies Canada Inc. Electrochemical Gas Sensors & Factors Affecting Life Expectancy. [(accessed on 12 May 2024)]. Available online: https://www.critical-environment.com/about/cet-blog/expert-insights/electrochemical-gas-sensors-factors-affecting-life-expectancy.
Diamond D. Principles of Chemical and Biological Sensors. Wiley-Interscience; Hoboken, NJ, USA: 1998.
Wilson J.S. Sensor Technology Handbook. Newnes; Oxford, UK: 2005.
SGX Sensortech MiCS-6814, 1143 Rev 8. Data Sheet. [(accessed on 6 July 2023)]. Available online: https://www.sgxsensortech.com/content/uploads/2015/02/1143_Datasheet-MiCS-6814-rev-8.pdf.
Zaidi N.A., Tahir M., Vinayaka P.P., Lucklum F., Vellekoop M.J., Lang W. Detection of ethylene using gas chromatographic system. Procedia Eng. 2016;168:380–383. doi: 10.1016/j.proeng.2016.11.140. DOI
Zaidi N.A., Tahir M.W., Vellekoop M.J., Lang W. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors. 2017;17:2283. doi: 10.3390/s17102283. PubMed DOI PMC
Zaidi N.A., Tahir M.W., Vellekoop M.J., Lang W. Design of Novel Ceramic Preconcentrator and Integration in Gas Chromatographic System for Detection of Ethylene Gas from Ripening Bananas. Sensors. 2018;18:2589. doi: 10.3390/s18082589. PubMed DOI PMC
Van Den Broek J., Abegg S., Pratsinis S.E., Güntner A.T. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 2019;10:4220. doi: 10.1038/s41467-019-12223-4. PubMed DOI PMC
Lachenmeier D.W. Advances in Food Authenticity Testing. Woodhead Publishing; Sawston, UK: 2016. Advances in the detection of the adulteration of alcoholic beverages including unrecorded alcohol; pp. 565–584.
Nekoukar Z., Zakariaei Z., Taghizadeh F., Musavi F., Banimostafavi E.S., Sharifpour A., Ghuchi N.E., Fakhar M., Tabaripour R., Safanavaei S. Methanol poisoning as a new world challenge: A review. Ann. Med. Surg. 2021;66:102445. doi: 10.1016/j.amsu.2021.102445. PubMed DOI PMC
Mika O.J., Weissmannova-Dolezalova H., Fišerová L. Mass methanol poisonings in the Czech Republic. Toxin Rev. 2014;33:101–106. doi: 10.3109/15569543.2014.883408. DOI
Zakharov S., Pelclová D., Urban P., Navrátil T., Diblík P., Kuthan P., Hubacek J.A., Miovský M., Klempíř J., Vaněčková M., et al. Czech mass methanol outbreak 2012: Epidemiology, challenges and clinical features. Clin. Toxicol. 2014;52:1013–1024. doi: 10.3109/15563650.2014.974106. PubMed DOI
Kamiloglu S. Authenticity and traceability in beverages. Food Chem. 2019;277:12–24. doi: 10.1016/j.foodchem.2018.10.091. PubMed DOI
Kimlinger M.J., Martin R.S. The Use of a 3D-printed Microfluidic Device and Pressure Mobilization for Integrating Capillary Electrophoresis with Electrochemical Detection. Electroanalysis. 2018;30:2241–2249. doi: 10.1002/elan.201800367. PubMed DOI PMC
Walczak R., Adamski K., Kubicki W. Inkjet 3D printed chip for capillary gel electrophoresis. Sens. Actuators B-Chem. 2018;261:474–480. doi: 10.1016/j.snb.2018.01.174. DOI
Esene J.E., Nasman P.R., Miner D.S., Nordin G.P., Woolley A.T. High-performance microchip electrophoresis separations of preterm birth biomarkers using 3D printed microfluidic devices. J. Chromatogr. A. 2023;1706:464242. doi: 10.1016/j.chroma.2023.464242. PubMed DOI PMC
Gupta V., Beirne S., Nesterenko P.N., Paull B. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases. Anal. Chem. 2018;90:1186–1194. doi: 10.1021/acs.analchem.7b03778. PubMed DOI
Sandron S., Heery B., Gupta V., Collins D.A., Nesterenko E.P., Nesterenko P.N., Talebi M., Beirne S., Thompson F., Wallace G.G., et al. 3D printed metal columns for capillary liquid chromatography. Analyst. 2014;139:6343–6347. doi: 10.1039/C4AN01476F. PubMed DOI
Phyo S., Choi S., Jang J., Choi S., Lee J. A 3D-printed metal column for micro gas chromatography. Lab Chip. 2020;20:3435–3444. doi: 10.1039/D0LC00540A. PubMed DOI
Selemani M.A., Martin R.S. Use of 3D printing to integrate microchip electrophoresis with amperometric detection. Anal. Bioanal. Chem. 2024;416:1–14. doi: 10.1007/s00216-024-05260-6. PubMed DOI
Mehta V., Rath S.N. 3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des. Manuf. 2021;4:311–343. doi: 10.1007/s42242-020-00112-5. DOI
Lucklum F., Janssen S., Lang W., Vellekoop M.J. Miniature 3D Gas Chromatography Columns with Integrated Fluidic Connectors Using High-resolution Stereolithography Fabrication. Procedia Eng. 2015;120:703–706. doi: 10.1016/j.proeng.2015.08.761. DOI