The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine

. 2020 Nov 10 ; 360 () : 136984. [epub] 20200824

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32863402

The combination of computer assisted design and 3D printing has recently enabled fast and inexpensive manufacture of customized 'reactionware' for broad range of electrochemical applications. In this work bi-material fused deposition modeling 3D printing is utilized to construct an integrated platform based on a polyamide electrochemical cell and electrodes manufactured from a polylactic acid-carbon nanotube conductive composite. The cell contains separated compartments for the reference and counter electrode and enables reactants to be introduced and inspected under oxygen-free conditions. The developed platform was employed in a study investigating the electrochemical oxidation of aqueous hydrazine coupled to its bulk reaction with carbon dioxide. The analysis of cyclic voltammograms obtained in reaction mixtures with systematically varied composition confirmed that the reaction between hydrazine and carbon dioxide follows 1/1 stoichiometry and the corresponding equilibrium constant amounts to (2.8 ± 0.6) × 103. Experimental characteristics were verified by results of numerical simulations based on the finite-element-method.

Zobrazit více v PubMed

Arivarasi A., Kumar A. Classification of challenges in 3D printing for combined electrochemical and microfluidic applications: a review. Rapid Prototyping J. 2019;25:1328–1346.

Lee C.Y., Taylor A.C., Nattestad A., Beirne S., Wallace G.G. 3D printing for electrocatalytic applications. Joule. 2019;3:1835–1849.

Symes M.D., Kitson P.J., Yan J., Richmond C.J., Cooper G.J.T., Bowman R.W., Vilbrandt T., Cronin L. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 2012;4:349–354. PubMed

Browne M.P., Redondo E., Pumera M. 3D printing for electrochemical energy applications. Chem. Rev. 2020;120:2783–2810. PubMed

Zhao C., Wang C.Y., Gorkin R., Beirne S., Shu K.W., Wallace G.G. Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochem. Commun. 2014;41:20–23.

Huang X.L., Chang S., Siang W., Lee V., Ding J., Xue J.M. Three-dimensional printed cellular stainless steel as a high-activity catalytic electrode for oxygen evolution. J. Mater. Chem. A. 2017;5:18176–18182.

Ambrosi A., Pumera M. Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts. ACS Sustain. Chem. Eng. 2018;6:16968–16975.

Ambrosi A., Pumera M. Self‐contained polymer/metal 3D printed electrochemical platform for tailored water splitting. Adv. Funct. Mater. 2018;28

Yang G.Q., Mo J.K., Kang Z.Y., Dohrmann Y., List F.A., Green J.B., Babu S.S., Zhang F.Y. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting. Applied Energy. 2018;215:202–210.

Hashemi S.M.H., Karnakov P., Hadikhani P., Chinello E., Litvinov S., Moser C., Koumoutsakos P., Psaltis D. A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energ. Environ. Sci. 2019;12:1592–1604.

Achilli E., Minguzzi A., Visibile A., Locatelli C., Vertova A., Naldoni A., Rondinini S., Auricchio F., Marconi S., Fracchia M., Ghigna P. 3D-printed photo-spectroelectrochemical devices for in situ and in operando X-ray absorption spectroscopy investigation. J. Synchrotron Radiat. 2016;23:622–628. PubMed

Santangelo M.F., Shtepliuk I., Filippini D., Puglisi D., Vagin M., Yakimova R., Eriksson J. Epitaxial graphene sensors combined with 3D-printed microfluidic chip for heavy metals detection. Sensors. 2019;19:2393. PubMed PMC

Scordo G., Bertana V., Scaltrito L., Ferrero S., Cocuzza M., Marasso S.L., Romano S., Sesana R., Catania F., Pirri C.F. A novel highly electrically conductive composite resin for stereolithography. Mater. Today Commun. 2019;19:12–17.

O'Neil G.D., Ahmed S., Halloran K., Janus J.N., Rodriguez A., Rodriguez I.M.T. Single-step fabrication of electrochemical flow cells utilizing multi-material 3D printing. Electrochem. Commun. 2019;99:56–60.

Mousset E., Weiqi V.H., Kai B.F.Y., Koh J.S., Tng J.W., Wang Z.X., Lefebvre O. A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and the Fenton reaction for advanced wastewater treatment. J. Mater. Chem. A. 2017;5:24951–24964.

Lozano I., Lopez C., Menendez N., Casillas N., Herrasti P. Design, construction and evaluation of a 3D printed electrochemical flow cell for the synthesis of magnetite nanoparticles. J. Electrochem. Soc. 2018;165:H688–H697.

Katseli V., Thomaidis N., Economou A., Kokkinos C. Miniature 3D-printed integrated electrochemical cell for trace voltammetric Hg(II) determination. Sensor. Actuator. B-Chem. 2020;308

Katseli V., Economou A., Kokkinos C. Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications. Electrochem. Commun. 2019;103:100–103.

Guima K.E., Alencar L.M., da Silva G.C., Trindade M.A.G., Martins C.A. 3D-printed electrolyzer for the conversion of glycerol into tartronate on Pd nanocubes. ACS Sustain. Chem. Eng. 2018;6:1202–1207.

Bishop G.W., Satterwhite J.E., Bhakta S., Kadimisetty K., Gillette K.M., Chen E., Rusling J.F. 3D-printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated prussian blue nanoparticle-modified electrodes. Anal. Chem. 2015;87:5437–5443. PubMed PMC

Cardoso R.M., Mendonça D.M., Silva W.P., Silva M.N., Nossol E., da Silva R.A., Richter E.M., Muñoz R.A. 3D printing for electroanalysis: from multiuse electrochemical cells to sensors. Anal. Chim. Acta. 2018;1033:49–57. PubMed

de Leon C.P., Hussey W., Frazao F., Jones D., Ruggeri E., Tzortzatos S., McKerracher R.D., Wills R.G.A., Yang S., Walsh F.C. The 3D printing of a polymeric electrochemical cell body and its characterisation. Chem. Engineer. Trans. 2014;41:1–6.

Dias A.A., Cardoso T.M.G., Cardoso R.M., Duarte L.C., Munoz R.A.A., Richter E.M., Coltro W.K.T. Paper-based enzymatic reactors for batch injection analysis of glucose on 3D printed cell coupled with amperometric detection. Sensor. Actuator. B-Chem. 2016;226:196–203.

dos Santos M.F., Katic V., dos Santos P.L., Pires B.M., Formiga A.L.B., Bonacin J.A. 3D-printed low-cost spectroelectrochemical cell for in situ Raman measurements. Anal. Chem. 2019;91:10386–10389. PubMed

Figueredo-Rodriguez H.A., McKerracher R.D., de Leon C.P., Walsh F.C. Current distribution in a rectangular flow channel manufactured by 3-D printing. AlChE J. 2017;63:1144–1151.

Rewatkar P., Bandapati M., Goel S. Miniaturized additively manufactured co-laminar microfluidic glucose biofuel cell with optimized grade pencil bioelectrodes. Int. J. Hydrogen Energy. 2019;44:31434–31444.

Richter E.M., Rocha D.P., Cardoso R.M., Keefe E.M., Foster C.W., Munoz R.A.A., Banks C.E. Complete additively manufactured (3D-printed) electrochemical sensing platform. Anal. Chem. 2019;91:12844–12851. PubMed

Wirth D.M., Sheaff M.J., Waldman J.V., Symcox M.P., Whitehead H.D., Sharp J.D., Doerfler J.R., Lamar A.A., LeBlanc G. Electrolysis activation of fused-filament-fabrication 3D-printed electrodes for electrochemical and spectroelectrochemical analysis. Anal. Chem. 2019;91:5553–5557. PubMed

Yang C.H., Chen C.W., Lin Y.K., Yeh Y.C., Hsu C.C., Fan Y.J., Yu I.S., Chen J.Z. Atmospheric-pressure plasma jet processed carbon-based electrochemical sensor integrated with a 3D-printed microfluidic channel, J. Electrochem. Soc. 2017;164:B534–B541.

Chisholm G., Kitson P.J., Kirkaldy N.D., Bloor L.G., Cronin L. 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energ. Environ. Sci. 2014;7:3026–3032.

Lowe S.E., Shi G., Zhang Y.B., Qin J.D., Wang S.J., Uijtendaal A., Sun J.Q., Jiang L.X., Jiang S.Y., Qi D.C., Al-Mamun M., Liu P.R., Zhong Y.L., Zhao H.J. Scalable production of graphene oxide using a 3D-printed packed-bed electrochemical reactor with a boron-doped diamond electrode. ACS Appl. Nano Mater. 2019;2:867–878.

van Melis C.G.W., Penny M.R., Garcia A.D., Petti A., Dobbs A.P., Hilton S.T., Lam K. Supporting-electrolyte-free electrochemical methoxymethylation of alcohols using a 3D-printed electrosynthesis continuous flow cell system. Chemelectrochem. 2019;6:4144–4148.

Damiati S., Kupcu S., Peacock M., Eilenberger C., Zamzami M., Qadri I., Choudhry H., Sleytr U.B., Schuster B. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2) Biosens. Bioelectron. 2017;94:500–506. PubMed

Poltorak L., Rudnicki K., Kolivoška V., Sebechlebská T., Krzyczmonik P., Skrzypek S. Electrochemical study of ephedrine at the polarized liquid-liquid interface supported with a 3D printed cell. J. Hazard. Mater. 2021;402 PubMed

Rymansaib Z., Iravani P., Emslie E., Medvidovic-Kosanovic M., Sak-Bosnar M., Verdejo R., Marken F. All-polystyrene 3D-printed electrochemical device with embedded carbon nanofiber-graphite-polystyrene composite conductor. Electroanalysis. 2016;28:1517–1523.

Foster C.W., Down M.P., Zhang Y., Ji X.B., Rowley-Neale S.J., Smith G.C., Kelly P.J., Banks C.E. 3D printed graphene based energy storage devices. Sci. Rep. 2017;7:42233. PubMed PMC

Rohaizad N., Mayorga-Martinez C.C., Novotny F., Webster R.D., Pumera M. 3D-printed Ag/AgCl pseudo-reference electrodes. Electrochem. Commun. 2019;103:104–108.

Hudkins J.R., Wheeler D.G., Pena B., Berlinguette C.P. Rapid prototyping of electrolyzer flow field plates. Energ. Environ. Sci. 2016;9:3417–3423.

Sebechlebska T., Vaněčková E., Shestivska V., Kolivoška V. Proceedings of the International Conference Modern Electrochemical Methods Xxxix. 2019. pp. 183–187.

Vaneckova E., Bousa M., Lachmanova S.N., Rathousky J., Gal M., Sebechlebska T., Kolivoska V. 3D printed polylactic acid/carbon black electrodes with nearly ideal electrochemical behaviour. J. Electroanal. Chem. 2020;857

Vaneckova E., Bousa M., Vivaldi F., Gal M., Rathousky J., Kolivoska V., Sebechlebska T. UV/VIS spectroelectrochemistry with 3D printed electrodes, J. Electroanal. Chem. 2020;857

Vaneckova E., Bousa M., Sokolova R., Moreno-Garcia P., Broekmann P., Shestivska V., Rathousky J., Gal M., Sebechlebska T., Kolivoska V. Copper electroplating of 3D printed composite electrodes. J. Electroanal. Chem. 2020;858

Hughes J.P., dos Santos P.L., Down M.P., Foster C.W., Bonacin J.A., Keefe E.M., Rowley-Neale S.J., Banks C.E. Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustain. Energy Fuels. 2020;4:302–311.

Foster C.W., Elbardisy H.M., Down M.P., Keefe E.M., Smith G.C., Banks C.E. Additively manufactured graphitic electrochemical sensing platforms. Chem. Eng. J. 2020;381

Katseli V., Economou A., Kokkinos C. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta. 2020;208 PubMed

Field C., Barros V., Dokken D., Mach K., Mastrandrea M., Mastrandrea P., White L. Climate change 2014: Impacts, adaptation, and vulnerability, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press Cambridge; New York: 2014. Intergovernmental panel on climate change.

Rudnev A.V., Zhumaev U.E., Kuzume A., Vesztergom S., Furrer J., Broekmann P., Wandlowski T. The promoting effect of water on the electroreduction of CO2 in acetonitrile. Electrochim. Acta. 2016;189:38–44.

Vasilyev D., Shirzadi E., Rudnev A.V., Broekmann P., Dyson P.J. Pyrazolium ionic liquid co-catalysts for the electroreduction of CO2. ACS Appl. Energy Mater. 2018;1:5124–5128.

Bishnoi S., Rochelle G.T. Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. AlChE J. 2002;48:2788–2799.

Faramarzi L., Kontogeorgis G.M., Thomsen K., Stenby E.H. Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions. Fluid Phase Equilib. 2009;282:121–132.

Rainbolt J.E., Koech P.K., Yonker C.R., Zheng F., Linehan J., Heldebrant D.J. Pressure-induced chemical and physical CO2 capture with pure alkanolamines with pressure-swing regeneration. Abstracts Pap. Am. Chem. Soc. 2011;241

Rodríguez N., Mussati S., Scenna N. Optimization of post-combustion CO2 process using DEA–MDEA mixtures. Chem. Eng. Res. Des. 2011;89:1763–1773.

Lee B., Stowe H.M., Lee K.H., Hur N.H., Hwang S.J., Paek E., Hwang G.S. Understanding CO2 capture mechanisms in aqueous hydrazine via combined NMR and first-principles studies. Phys. Chem. Chem. Phys. 2017;19:24067–24075. PubMed

Lee K.H., Lee B., Lee J.H., You J.K., Park K.T., Baek I.H., Hur N.H. Aqueous hydrazine as a promising candidate for capturing carbon dioxide. Int. J. Greenh. Gas Con. 2014;29:256–262.

Schirmann J.-P., Bourdauducq P. Wiley-VCH, Weinheim; 2002. Hydrazine. Ullmann's Encyclopedia of Industrial Chemistry. DOI, 10 a13_177.

Chen J.P., Lim L.L. Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere. 2002;49:363–370. PubMed

Mosai A.K., Chimuka L., Cukrowska E.M., Kotze I.A., Tutu H. The recovery of platinum (IV) from aqueous solutions by hydrazine-functionalised zeolite. Miner. Eng. 2019;131:304–312.

Hong L., Yin L.J., Chen D.Z., Wang D. Proposal and verification of a kinetic mechanism model for NOx removal with hydrazine hydrate. AlChE J. 2015;61:904–912.

Lee J.B., Kim S.D. NOx reduction by hydrazine in a pilot-scale reactor. Chem. Eng. J. 1998;69:99–104.

Wang F., Gerken J.B., Bates D.M., Kim Y.J., Stahl S.S. Electrochemical strategy for hydrazine synthesis: development and overpotential analysis of methods for oxidative N-N coupling of an ammonia surrogate. J. Am. Chem. Soc. 2020;142:12349–12356. PubMed PMC

Sebechlebska T., Sebera J., Kolivoska V., Lindner M., Gasior J., Meszaros G., Valasek M., Mayor M., Hromadova M. Investigation of the geometrical arrangement and single molecule charge transport in self-assembled monolayers of molecular towers based on tetraphenylmethane tripod. Electrochim. Acta. 2017;258:1191–1200.

Sebera J., Sebechlebska T., Novakova Lachmanova S., Gasior J., Garcia P.M., Meszaros G., Valasek M., Kolivoska V., Hromadova M. Investigation of the charge transport in model single molecule junctions based on expanded bipyridinium molecular conductors. Electrochim. Acta. 2019;301:267–273.

Wolfbeis O.S., Kovacs B., Goswami K., Klainer S.M. Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring. Microchimica Acta. 1998;129:181–188.

COMSOL MultiphysicsⓇ v. 5.4. www.comsol.com. COMSOL AB, Stockholm, Sweden. [acceesed 10 Aug 2020].

Ardakani M.M., Karimi M.A., Zare M.M., Mirdehghan S.M. Investigation of electrochemical behavior of hydrazine with alizarin as a mediator on glassy carbon electrode. Int. J. Electrochem. Sci. 2008;3:246–258.

Frank M.J.W., Kuipers J.A.M., vanSwaaij W.P.M. Diffusion coefficients and viscosities of CO2+H2O, CO2+CH3OH, NH3+H2O, and NH3+CH3OH liquid mixtures. J. Chem. Eng. Data. 1996;41:297–302.

Bard A.J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications. 2nd edition. Viley-VCH; USA: 2000. Electrochemical Methods.

Aldous L., Compton R.G. The mechanism of hydrazine electro-oxidation revealed by platinum microelectrodes: role of residual oxides. Phys. Chem. Chem. Phys. 2011;13:5279–5287. PubMed

Pollet P., Samanta S., Apkarian R.P., Gelbaum L., Leisen J., Kitchens C.L., Griffith K., Richman K., Eckert C.A., Liotta C.L. CO2 promoted gel formation of hydrazine, monomethylhydrazine, and ethylenediamine: structures and properties. Ind. Eng. Chem. Res. 2019;58:22652–22662.

Wang X.G., Conway W., Fernandes D., Lawrance G., Burns R., Puxty G., Maeder M. Kinetics of the reversible reaction of CO2(aq) with ammonia in aqueous solution. J. Phys. Chem. A. 2011;115:6405–6412. PubMed

McCann N., Phan D., Wang X.G., Conway W., Burns R., Attalla M., Puxty G., Maeder M. Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution. J. Phys. Chem. A. 2009;113:5022–5029. PubMed

Abdulagatov I.M., Azizov N.D. Thermal conductivity and viscosity of aqueous K2SO4 solutions at temperatures from 298 to 575K and at pressures up to 30 MPa. Int. J. Thermophys. 2005;26:593–635.

Rudnicki K., Poltorak L., Skrzypek S., Sudholter E.J.R. FusedSilica microcapillaries used for a simple miniaturization of the electrified liquid-liquid interface. Anal. Chem. 2018;90:7112–7116. PubMed PMC

Rudnicki K., Poltorak L., Skrzypek S., Sudholter E.J.R. Ion transfer voltammetry for analytical screening of fluoroquinolone antibiotics at the water-1.2-dichloroethane interface. Anal. Chim. Acta. 2019;1085:75–84. PubMed

Kolivoska V., Weiss V.U., Kremser L., Gas B., Blaas D., Kenndler E. Electrophoresis on a microfluidic chip for analysis of fluorescence-labeled human rhinovirus. Electrophoresis. 2007;28:4734–4740. PubMed PMC

Weiss V.U., Kolivoska V., Kremser L., Gas B., Blaas D., Kenndler E. Virus analysis by electrophoresis on a microfluidic chip. J. Chromatrogr. B. 2007;860:173–179. PubMed

Cardoso R.M., Silva P.R.L., Lima A.P., Rocha D.P., Oliveira T.C., do Prado T.M., Fava E.L., Fatibello-Filho O., Richter E.M., Munoz R.A.A. 3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sensor. Actuator. B-Chem. 2020;307

Erkal J.L., Selimovic A., Gross B.C., Lockwood S.Y., Walton E.L., McNamara S., Martin R.S., Spence D.M. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab on a Chip. 2014;14:2023–2032. PubMed PMC

Sahin A., Lin W.T., Khunjar W.O., Chandran K., Banta S., West A.C. Electrochemical reduction of nitrite to ammonia for use in a bioreactor. J. Electrochem. Soc. 2013;160:G19–G26.

Sebechlebska T., Neogrady P., Valent I. A three-ions model of electrodiffusion kinetics in a nanochannel. Chem. Phys. Lett. 2016;663:33–39.

Valent I., Petrovic P., Neogrady P., Schreiber I., Marek M. Electrodiffusion kinetics of ionic transport in a simple membrane channel. J. Phys. Chem. B. 2013;117:14283–14293. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

3D Printed Platform for Impedimetric Sensing of Liquids and Microfluidic Channels

. 2022 Oct 18 ; 94 (41) : 14426-14433. [epub] 20221006

Applicability of Selected 3D Printing Materials in Electrochemistry

. 2022 May 07 ; 12 (5) : . [epub] 20220507

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...