Central Neuropathic Pain Development Modulation Using Coffee Extract Major Polyphenolic Compounds in Spinal-Cord-Injured Female Mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
201705.30.31
La Marató de TV3 Foundation
MPCUdG2016/087
Vice-Chancellorship of Research of the University of Girona
PubMed
36358318
PubMed Central
PMC9687351
DOI
10.3390/biology11111617
PII: biology11111617
Knihovny.cz E-zdroje
- Klíčová slova
- 4-O-caffeoylquinic acid, chlorogenic acid, coffee extract, gliosis, neochlorogenic acid, neuropathic pain, polyphenols, spinal cord injury,
- Publikační typ
- časopisecké články MeSH
It was recently shown that coffee polyphenolic extract exerts preventive effects on central neuropathic pain development, but it is unknown whether its beneficial effects are associated with only one of its major polyphenolic compounds or if the whole extract is needed to exert such effects. The main objective of this study was to determine whether the separate administration of major polyphenols from coffee extract exerts preventive effects on the development of central neuropathic pain in mice compared with the effects of the whole coffee extract. Thus, spinal-cord-injured female ICR-CD1 mice were daily treated with either coffee extract or its major polyphenolic compounds during the first week, and reflexive and nonreflexive pain responses were evaluated within the acute phase of spinal cord injury. In addition, the injury-induced gliosis and dorsal horn sprouting were evaluated with immunohistochemistry. The results showed that the coffee extract prevented spinal cord injury-induced neuropathic pain, whereas its major polyphenolic compounds resulted in reflexive pain response attenuation. Both preventive and attenuation effects were associated with gliosis and afferent fiber sprouting modulation. Overall, the results suggested that coffee extract effects may be associated with potential synergistic mechanisms exerted by its major polyphenolic compounds and not by the sole effect of only one of them.
Zobrazit více v PubMed
Bennett J., Das J.M., Emmady P.D. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Spinal Cord Injuries. PubMed
Burke D., Fullen B.M., Stokes D., Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur. J. Pain. 2017;21:29–44. doi: 10.1002/ejp.905. PubMed DOI
Attal N. Pharmacological treatments of neuropathic pain: The latest recommendations. Rev. Neurol. 2019;175:46–50. doi: 10.1016/j.neurol.2018.08.005. PubMed DOI
Pirvulescu I., Biskis A., Candido K.D., Knezevic N.N. Overcoming clinical challenges of refractory neuropathic pain. Expert. Rev. Neurother. 2022;22:595–622. doi: 10.1080/14737175.2022.2105206. PubMed DOI
Jahromi B., Pirvulescu I., Candido K.D., Knezevic N.N. Herbal Medicine for Pain Management: Efficacy and Drug Interactions. Pharmaceutics. 2021;13:251. doi: 10.3390/pharmaceutics13020251. PubMed DOI PMC
Boadas-Vaello P., Vela J.M., Verdu E. New Pharmacological Approaches Using Polyphenols on the Physiopathology of Neuropathic Pain. Curr. Drug Targets. 2017;18:160–173. doi: 10.2174/1389450117666160527142423. PubMed DOI
Hassler S.N., Johnson K.M., Hulsebosch C.E. Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats. J. Neurochem. 2014;131:413–417. doi: 10.1111/jnc.12830. PubMed DOI PMC
Ma L., Mu Y., Zhang Z., Sun Q. Eugenol promotes functional recovery and alleviates inflammation, oxidative stress, and neural apoptosis in a rat model of spinal cord injury. Restor. Neurol. Neurosci. 2018;36:659–668. doi: 10.3233/RNN-180826. PubMed DOI
Renno W.M., Al-Khaledi G., Mousa A., Karam S.M., Abul H., Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology. 2014;77:100–119. doi: 10.1016/j.neuropharm.2013.09.013. PubMed DOI
Álvarez-Pérez B., Homs J., Bosch-Mola M., Puig T., Reina F., Verdú E., Boadas-Vaello P. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur. J. Pain. 2016;20:341–352. doi: 10.1002/ejp.722. PubMed DOI
Bagó-Mas A., Korimová A., Deulofeu M., Verdú E., Fiol N., Svobodová V., Dubový P., Boadas-Vaello P. Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice. Sci. Rep. 2022;12:14980. doi: 10.1038/s41598-022-19109-4. PubMed DOI PMC
Schmidt B.M., Ribnicky D.M., Lipsky P.E., Raskin I. Revisiting the ancient concept of botanical therapeutics. Nat. Chem. Biol. 2007;3:360–366. doi: 10.1038/nchembio0707-360. PubMed DOI
Atanasov A.G., Zotchev S.B., Dirsch V.M., International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC
Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC
Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–110. doi: 10.1016/0304-3959(83)90201-4. PubMed DOI
Castany S., Gris G., Vela J.M., Verdú E., Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci. Rep. 2018;8:3873. doi: 10.1038/s41598-018-22217-9. PubMed DOI PMC
Castany S., Codony X., Zamanillo D., Merlos M., Verdú E., Boadas-Vaello P. Repeated Sigma-1 Receptor Antagonist MR309 Administration Modulates Central Neuropathic Pain Development After Spinal Cord Injury in Mice. Front. Pharmacol. 2019;10:222. doi: 10.3389/fphar.2019.00222. PubMed DOI PMC
Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI
Basso D.M., Fisher L.C., Anderson A.J., Jakeman L.B., McTigue D.M., Popovich P.G. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma. 2006;23:635–659. doi: 10.1089/neu.2006.23.635. PubMed DOI
Hargreaves K., Dubner R., Brown F., Flores C., Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7. PubMed DOI
Dixon W.J. Efficient analysis of experimental observations. Annu. Rev. Pharmacol. Toxicol. 1980;20:441–462. doi: 10.1146/annurev.pa.20.040180.002301. PubMed DOI
Porsolt R.D., Bertin A., Jalfre M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharm. Ther. 1977;229:327–336. PubMed
Álvarez-Pérez B., Deulofeu M., Homs J., Merlos M., Vela J.M., Verdú E., Boadas-Vaello P. Long-lasting reflexive and nonreflexive pain responses in two mouse models of fibromyalgia-like condition. Sci. Rep. 2022;12:9719. doi: 10.1038/s41598-022-13968-7. PubMed DOI PMC
Zamboni L., De Martino C. Buffered picric acid-formaldehyde: A new, rapid, fixative for electron microscopy. J. Cell Biol. 1967;35:148A.
Morton D.B., Griffiths P.H. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet. Rec. 1985;116:431–436. doi: 10.1136/vr.116.16.431. PubMed DOI
Anwar M.A., Al Shehabi T.S., Eid A.H. Inflammogenesis of Secondary Spinal Cord Injury. Front. Cell. Neurosci. 2016;10:98. doi: 10.3389/fncel.2016.00098. PubMed DOI PMC
Gwak Y.S., Hulsebosch C.E., Leem J.W. Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury. Neural Plast. 2017:2480689. doi: 10.1155/2017/2480689. PubMed DOI PMC
National Center for Biotechnology Information PubChem Compound Summary for CID 1794427, Chlorogenic Acid. [(accessed on 14 September 2022)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Chlorogenic-acid.
Bagdas D., Cinkilic N., Ozboluk H.Y., Ozyigit M.O., Gurun M.S. Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J. Nat. Med. 2013;67:698–704. doi: 10.1007/s11418-012-0726-z. PubMed DOI
Hara K., Haranishi Y., Kataoka K., Takahashi Y., Terada T., Nakamura M., Sata T. Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur. J. Pharmacol. 2014;723:459–464. doi: 10.1016/j.ejphar.2013.10.046. PubMed DOI
Bagdas D., Ozboluk H.Y., Cinkilic N., Gurun M.S. Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy. J. Med. Food. 2014;17:730–732. doi: 10.1089/jmf.2013.2966. PubMed DOI
Bagdas D., Gul Z., Meade J.A., Cam B., Cinkilic N., Gurun M.S. Pharmacologic Overview of Chlorogenic Acid and its Metabolites in Chronic Pain and Inflammation. Curr. Neuropharmacol. 2020;18:216–228. doi: 10.2174/1570159X17666191021111809. PubMed DOI PMC
Liang N., Kitts D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients. 2015;8:16. doi: 10.3390/nu8010016. PubMed DOI PMC
Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., FangFang X., Modarresi-Ghazani F., et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018;97:67–74. doi: 10.1016/j.biopha.2017.10.064. PubMed DOI
National Center for Biotechnology Information PubChem Compound Summary for CID 5280633, Neochlorogenic Acid. [(accessed on 14 September 2022)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Neochlorogenic-acid.
Park S.Y., Jin M.L., Yi E.H., Kim Y., Park G. Eochlorogenic acid inhibits against LPS-activated inflammatory responses through up-regulation of Nrf2/HO-1 and involving AMPK pathway. Environ. Toxicol. Pharmacol. 2018;62:1–10. doi: 10.1016/j.etap.2018.06.001. PubMed DOI
Gao X.H., Zhang S.D., Wang L.T., Yu L., Zhao X.L., Ni H.Y., Wang Y.Q., Wang J.D., Shan C.H., Fu Y.J. Anti-Inflammatory Effects of Neochlorogenic Acid Extract from Mulberry Leaf (Morus alba L.) against LPS-Stimulated Inflammatory Response through Mediating the AMPK/Nrf2 Signaling Pathway in A549 Cells. Molecules. 2020;25:1385. doi: 10.3390/molecules25061385. PubMed DOI PMC
Basbaum A.I., Bautista D.M., Scherrer G., Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–284. doi: 10.1016/j.cell.2009.09.028. PubMed DOI PMC
National Center for Biotechnology Information PubChem Compound Summary for CID 9798666, Cryptochlorogenic Acid. [(accessed on 14 September 2022)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cryptochlorogenic-acid.
Ganzon J.G., Chen L.G., Wang C.C. 4-O-Caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. J. Food Drug Anal. 2018;26:985–993. doi: 10.1016/j.jfda.2017.11.011. PubMed DOI PMC
Shen W., Qi R., Zhang J., Wang Z., Wang H., Hu C., Zhao Y., Bie M., Wang Y., Fu Y., et al. Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res. Bull. 2012;88:487–494. doi: 10.1016/j.brainresbull.2012.04.010. PubMed DOI
Guo Y.J., Luo T., Wu F., Mei Y.W., Peng J., Liu H., Li H.R., Zhang S.L., Dong J.H., Fang Y., et al. Involvement of TLR2 and TLR9 in the anti-inflammatory effects of chlorogenic acid in HSV-1-infected microglia. Life Sci. 2015;127:12–18. doi: 10.1016/j.lfs.2015.01.036. PubMed DOI
Cásedas G., Bennett A.C., González-Burgos E., Gómez-Serranillos M.P., López V., Smith C. Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: Do we know enough for responsible compounding? Inflammopharmacology. 2019;27:189–197. doi: 10.1007/s10787-018-0549-y. PubMed DOI
Kim M., Choi S.Y., Lee P., Hur J. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells. Neurochem. Res. 2015;40:1792–1798. doi: 10.1007/s11064-015-1659-1. PubMed DOI
Lukitasari M., Nugroho D.A., Widodo N. Chlorogenic Acid: The Conceivable Chemosensitizer Leading to Cancer Growth Suppression. J. Evid. Based Integr. Med. 2018;23:2515690X18789628. doi: 10.1177/2515690X18789628. PubMed DOI PMC
Chen Y.K., Ngoc N., Chang H.W., Su Y.F., Chen C.H., Goan Y.G., Chen J.Y., Tung C.W., Hour T.C. Chlorogenic Acid Inhibition of Esophageal Squamous Cell Carcinoma Metastasis via EGFR/p-Akt/Snail Signaling Pathways. Anticancer Res. 2022;42:3389–3402. doi: 10.21873/anticanres.15826. PubMed DOI
Ferrer I., Alcántara S., Ballabriga J., Olivé M., Blanco R., Rivera R., Carmona M., Berruezo M., Pitarch S., Planas A.M. Transforming growth factor-alpha (TGF-alpha) and epidermal growth factor-receptor (EGF-R) immunoreactivity in normal and pathologic brain. Prog. Neurobiol. 1996;49:99–123. doi: 10.1016/0301-0082(96)00009-3. PubMed DOI
Planas A.M., Justicia C., Soriano M.A., Ferrer I. Epidermal growth factor receptor in proliferating reactive glia following transient focal ischemia in the rat brain. Glia. 1998;23:120–129. doi: 10.1002/(SICI)1098-1136(199806)23:2<120::AID-GLIA3>3.0.CO;2-A. PubMed DOI
Qu W.S., Tian D.S., Guo Z.B., Fang J., Zhang Q., Yu Z.Y., Xie M.J., Zhang H.Q., Lü J.G., Wang W. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation. 2012;9:178. doi: 10.1186/1742-2094-9-178. PubMed DOI PMC
Xu W., Luo T., Chai J., Jing P., Xiong L. Chlorogenic Acid Alleviates the Inflammatory Stress of LPS-Induced BV2 Cell via Interacting with TLR4-Mediated Downstream Pathway. Comput. Math. Methods Med. 2022;2022:6282167. doi: 10.1155/2022/6282167. PubMed DOI PMC
Shi A., Shi H., Wang Y., Liu X., Cheng Y., Li H., Zhao H., Wang S., Dong L. Activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protective effect of chlorogenic acid on acute liver injury. Int. Immunopharmacol. 2018;54:125–130. doi: 10.1016/j.intimp.2017.11.007. PubMed DOI
Huang X., Liu Y., Shen H., Fu T., Guo Y., Qiu S. Chlorogenic acid attenuates inflammation in LPS-induced Human gingival fibroblasts via CysLT1R/Nrf2/NLRP3 signaling. Int. Immunopharmacol. 2022;107:108706. doi: 10.1016/j.intimp.2022.108706. PubMed DOI
He W., Long T., Pan Q., Zhang S., Zhang Y., Zhang D., Qin G., Chen L., Zhou J. Microglial NLRP3 inflammasome activation mediates IL-1β release and contributes to central sensitization in a recurrent nitroglycerin-induced migraine model. J. Neuroinflammation. 2019;16:78. doi: 10.1186/s12974-019-1459-7. PubMed DOI PMC
Starobova H., Nadar E.I., Vetter I. The NLRP3 Inflammasome: Role and Therapeutic Potential in Pain Treatment. Front. Physiol. 2020;11:1016. doi: 10.3389/fphys.2020.01016. PubMed DOI PMC
Wang J., Li F., Zeng K., Li Q., Zhao X., Zheng X. Bioactive compounds of Shuang-Huang-Lian prescription and an insight into its binding mechanism by β2 -adrenoceptor chromatography coupled with site-directed molecular docking. J. Sep. Sci. 2017;40:4357–4365. doi: 10.1002/jssc.201700522. PubMed DOI
Wohleb E.S., Hanke M.L., Corona A.W., Powell N.D., Stiner L.M., Bailey M.T., Nelson R.J., Godbout J.P., Sheridan J.F. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J. Neurosci. 2011;31:6277–6288. doi: 10.1523/JNEUROSCI.0450-11.2011. PubMed DOI PMC
Johnson J.D., Zimomra Z.R., Stewart L.T. Beta-adrenergic receptor activation primes microglia cytokine production. J. Neuroimmunol. 2013;254:161–164. doi: 10.1016/j.jneuroim.2012.08.007. PubMed DOI
Sharma M., Arbabzada N., Flood P.M. Mechanism underlying β2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. J. Neuroimmunol. 2019;332:37–48. doi: 10.1016/j.jneuroim.2019.03.017. PubMed DOI
Nees T.A., Finnerup N.B., Blesch A., Weidner N. Neuropathic pain after spinal cord injury: The impact of sensorimotor activity. Pain. 2017;158:371–376. doi: 10.1097/j.pain.0000000000000783. PubMed DOI
Sliwinski C., Nees T.A., Puttagunta R., Weidner N., Blesch A. Sensorimotor Activity Partially Ameliorates Pain and Reduces Nociceptive Fiber Density in the Chronically Injured Spinal Cord. J. Neurotrauma. 2018;35:2222–2238. doi: 10.1089/neu.2017.5431. PubMed DOI PMC
Hutchinson K.J., Gómez-Pinilla F., Crowe M.J., Ying Z., Basso D.M. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain. 2004;127:1403–1414. doi: 10.1093/brain/awh160. PubMed DOI
Detloff M.R., Smith E.J., Quiros Molina D., Ganzer P.D., Houlé J.D. Acute exercise prevents the development of neuropathic pain and the sprouting of non-peptidergic (GDNF- and artemin-responsive) c-fibers after spinal cord injury. Exp. Neurol. 2014;255:38–48. doi: 10.1016/j.expneurol.2014.02.013. PubMed DOI PMC
Saeed A.W., Ribeiro-da-Silva A. Non-peptidergic primary afferents are presynaptic to neurokinin-1 receptor immunoreactive lamina I projection neurons in rat spinal cord. Mol. Pain. 2012;8:64. doi: 10.1186/1744-8069-8-64. PubMed DOI PMC
Mika J., Zychowska M., Popiolek-Barczyk K., Rojewska E., Przewlocka B. Importance of glial activation in neuropathic pain. Eur. J. Pharmacol. 2013;716:106–119. doi: 10.1016/j.ejphar.2013.01.072. PubMed DOI
Bennett D.L., Michael G.J., Ramachandran N., Munson J.B., Averill S., Yan Q., McMahon S.B., Priestley J.V. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J. Neurosci. 1998;18:3059–3072. doi: 10.1523/JNEUROSCI.18-08-03059.1998. PubMed DOI PMC
Bennett D.L., French J., Priestley J.V., McMahon S.B. NGF but not NT-3 or BDNF prevents the A fiber sprouting into lamina II of the spinal cord that occurs following axotomy. Mol. Cell Neurosci. 1996;8:211–220. doi: 10.1006/mcne.1996.0059. PubMed DOI
Bresjanac M., Antauer G. Reactive astrocytes of the quinolinic acid-lesioned rat striatum express GFRalpha1 as well as GDNF in vivo. Exp. Neurol. 2000;164:53–59. doi: 10.1006/exnr.2000.7416. PubMed DOI
Cheng Y.Y., Zhao H.K., Chen L.W., Yao X.Y., Wang Y.L., Huang Z.W., Li G.P., Wang Z., Chen B.Y. Reactive astrocytes increase expression of proNGF in the mouse model of contused spinal cord injury. Neurosci. Res. 2020;157:34–43. doi: 10.1016/j.neures.2019.07.007. PubMed DOI
Iravani M.M., Sadeghian M., Leung C.C., Jenner P., Rose S. Lipopolysaccharide-induced nigral inflammation leads to increased IL-1β tissue content and expression of astrocytic glial cell line-derived neurotrophic factor. Neurosci. Lett. 2012;510:138–142. doi: 10.1016/j.neulet.2012.01.022. PubMed DOI
Krenz N.R., Weaver L.C. Sprouting of primary afferent fibers after spinal cord transection in the rat. Neuroscience. 1998;85:443–458. doi: 10.1016/S0306-4522(97)00622-2. PubMed DOI
Schaffer S., Halliwell B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr. 2012;7:99–109. doi: 10.1007/s12263-011-0255-5. PubMed DOI PMC
Williams C.M., El Mohsen M.A., Vauzour D., Rendeiro C., Butler L.T., Ellis J.A., Whiteman M., Spencer J.P. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med. 2008;45:295–305. doi: 10.1016/j.freeradbiomed.2008.04.008. PubMed DOI
Wang Q., Sun A.Y., Simonyi A., Jensen M.D., Shelat P.B., Rottinghaus G.E., MacDonald R.S., Miller D.K., Lubahn D.E., Weisman G.A., et al. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J. Neurosci. Res. 2005;82:138–148. doi: 10.1002/jnr.20610. PubMed DOI
Kalt W., Blumberg J.B., McDonald J.E., Vinqvist-Tymchuk M.R., Fillmore S.A., Graf B.A., O’Leary J.M., Milbury P.E. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J. Agric. Food Chem. 2008;56:705–712. doi: 10.1021/jf071998l. PubMed DOI
Begum A.N., Jones M.R., Lim G.P., Morihara T., Kim P., Heath D.D., Rock C.L., Pruitt M.A., Yang F., Hudspeth B., et al. urcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther. 2008;326:196–208. doi: 10.1124/jpet.108.137455. PubMed DOI PMC
Milbury P.E., Kalt W. Xenobiotic metabolism and berry flavonoid transport across the blood-brain barrier. J. Agric. Food Chem. 2010;58:3950–3956. doi: 10.1021/jf903529m. PubMed DOI
Suresh D., Srinivasan K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res. 2010;131:682–691. PubMed
Miller L.R., Cano A. Comorbid chronic pain and depression: Who is at risk? J. Pain. 2009;10:619–627. doi: 10.1016/j.jpain.2008.12.007. PubMed DOI
Goesling J., Clauw D.J., Hassett A.L. Pain and depression: An integrative review of neurobiological and psychological factors. Curr. Psychiatry Rep. 2013;15:421. doi: 10.1007/s11920-013-0421-0. PubMed DOI
Fakhri S., Abbaszadeh F., Moradi S.Z., Cao H., Khan H., Xiao J. Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury. Oxid. Med. Cell. Longev. 2022;2022:8100195. doi: 10.1155/2022/8100195. PubMed DOI PMC
Teixeira-Santos L., Albino-Teixeira A., Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol. Res. 2020;162:105280. doi: 10.1016/j.phrs.2020.105280. PubMed DOI