Transient Reflexive Pain Responses and Chronic Affective Nonreflexive Pain Responses Associated with Neuroinflammation Processes in Both Spinal and Supraspinal Structures in Spinal Cord-Injured Female Mice

. 2023 Jan 16 ; 24 (2) : . [epub] 20230116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36675275

Grantová podpora
2014-DI-026 ESTEVE - Universitat de Girona Agency for Administration of University and Research
201705.30.31 La Marató de TV3 Foundation

Central neuropathic pain is not only characterized by reflexive pain responses, but also emotional or affective nonreflexive pain responses, especially in women. Some pieces of evidence suggest that the activation of the neuroimmune system may be contributing to the manifestation of mood disorders in patients with chronic pain conditions, but the mechanisms that contribute to the development and chronicity of CNP and its associated disorders remain poorly understood. This study aimed to determine whether neuroinflammatory factor over-expression in the spinal cord and supraspinal structures may be associated with reflexive and nonreflexive pain response development from acute SCI phase to 12 weeks post-injury in female mice. The results show that transient reflexive responses were observed during the SCI acute phase associated with transient cytokine overexpression in the spinal cord. In contrast, increased nonreflexive pain responses were observed in the chronic phase associated with cytokine overexpression in supraspinal structures, especially in mPFC. In addition, results revealed that besides cytokines, the mPFC showed an increased glial activation as well as CX3CL1/CX3CR1 upregulation in the neurons, suggesting the contribution of neuron-glia crosstalk in the development of nonreflexive pain responses in the chronic spinal cord injury phase.

Zobrazit více v PubMed

van Gorp S., Kessels A.G., Joosten E.A., van Kleef M., Patijn J. Pain prevalence and its determinants after spinal cord injury: A systematic review. Eur. J. Pain. 2015;19:5–14. doi: 10.1002/ejp.522. PubMed DOI

Burke D., Fullen B.M., Stokes D., Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur. J. Pain. 2017;21:29–44. doi: 10.1002/ejp.905. PubMed DOI

National Spinal Cord Injury Statistical Center . Facts and Figures at a Glance. University of Alabama at Birmingham; Birmingham, AL, USA: 2020. [(accessed on 27 November 2022)]. Available online: https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%202020.pdf.

Tashiro S., Nishimura S., Iwai H., Sugai K., Zhang L., Shinozaki M., Iwanami A., Toyama Y., Liu M., Okano H., et al. Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury. Sci. Rep. 2016;6:30898. doi: 10.1038/srep30898. PubMed DOI PMC

Becker S., Gandhi W., Schweinhardt P. Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci. Lett. 2012;520:182–187. doi: 10.1016/j.neulet.2012.03.013. PubMed DOI

Vall J., Batista-Braga V.A., Almeida P.C. Central neuropathic pain and its relation to the quality of life of a person with a traumatic spinal cord injury. Rev. Neurol. 2006;42:525–529. PubMed

Murray R.F., Asghari A., Egorov D.D., Rutkowski S.B., Siddall P.J., Soden R.J., Ruff R. Impact of spinal cord injury on self-perceived pre- and postmorbid cognitive, emotional and physical functioning. Spinal Cord. 2007;45:429–436. doi: 10.1038/sj.sc.3102022. PubMed DOI

Saurí J., Chamarro A., Gilabert A., Gifre M., Rodriguez N., Lopez-Blazquez R., Curcoll L., Benito-Penalva J., Soler D. Depression in Individuals with Traumatic and Nontraumatic Spinal Cord Injury Living in the Community. Arch. Phys. Med. Rehabil. 2017;98:1165–1173. doi: 10.1016/j.apmr.2016.11.011. PubMed DOI

Rivers C.S., Fallah N., Noonan V.K., Whitehurst D.G., Schwartz C.E., Finkelstein J.A., Craven B.C., Ethans K., O’Connell C., RHSCIR Network et al. Health Conditions: Effect on Function, Health-Related Quality of Life, and Life Satisfaction After Traumatic Spinal Cord Injury. A Prospective Observational Registry Cohort Study. Arch. Phys. Med. Rehabil. 2018;99:443–451. doi: 10.1016/j.apmr.2017.06.012. PubMed DOI

Miller L.R., Cano A. Comorbid chronic pain and depression: Who is at risk? J. Pain. 2009;10:619–627. doi: 10.1016/j.jpain.2008.12.007. PubMed DOI

Goesling J., Clauw D.J., Hassett A.L. Pain and depression: An integrative review of neurobiological and psychological factors. Curr. Psychiatry Rep. 2013;15:421. doi: 10.1007/s11920-013-0421-0. PubMed DOI

Liu M.G., Chen J. Preclinical research on pain comorbidity with affective disorders and cognitive deficits: Challenges and perspectives. Prog. Neurobiol. 2014;116:13–32. doi: 10.1016/j.pneurobio.2014.01.003. PubMed DOI

Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., Lanctôt K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry. 2010;67:446–457. doi: 10.1016/j.biopsych.2009.09.033. PubMed DOI

Miller A.H., Haroon E., Raison C.L., Felger J.C. Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depress. Anxiety. 2013;30:297–306. doi: 10.1002/da.22084. PubMed DOI PMC

Anisman H., Merali Z., Poulter M.O., Hayley S. Cytokines as a precipitant of depressive illness: Animal and human studies. Curr. Pharm. Des. 2005;11:963–972. doi: 10.2174/1381612053381701. PubMed DOI

Merali Z., Brennan K., Brau P., Anisman H. Dissociating anorexia and anhedonia elicited by interleukin-1beta: Antidepressant and gender effects on responding for "free chow" and "earned" sucrose intake. Psychopharmacology. 2003;165:413–418. doi: 10.1007/s00213-002-1273-1. PubMed DOI

Austin P.J., Moalem-Taylor G. The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. J. Neuroimmunol. 2010;229:26–50. doi: 10.1016/j.jneuroim.2010.08.013. PubMed DOI

Hulsebosch C.E., Hains B.C., Crown E.D., Carlton S.M. Mechanisms of Chronic Central Neuropathic Pain after Spinal Cord Injury’. Brain Res. Rev. 2009;60:202–213. doi: 10.1016/j.brainresrev.2008.12.010. PubMed DOI PMC

Watson J.L., Hala T.J., Putatunda R., Sannie D., Lepore A.C. Persistent at-level thermal hyperalgesia and tactile allodynia accompany chronic neuronal and astrocyte activation in superficial dorsal horn following mouse cervical contusion spinal cord injury. PLoS ONE. 2014;9:e109099. doi: 10.1371/journal.pone.0109099. PubMed DOI PMC

Wu J., Renn C.L., Faden A.I., Dorsey S.G. TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways. J. Neurosci. 2013;33:12447–12463. doi: 10.1523/JNEUROSCI.0846-13.2013. PubMed DOI PMC

Wu J., Stoica B.A., Luo T., Sabirzhanov B., Zhao Z., Guanciale K., Nayar S.K., Foss C.A., Pomper M.G., Faden A.I. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation. Cell Cycle. 2014;13:2446–2458. doi: 10.4161/cc.29420. PubMed DOI PMC

Wu J., Zhao Z., Sabirzhanov B., Stoica B.A., Kumar A., Luo T., Skovira J., Faden A.I. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: Role of cell cycle pathways. J. Neurosci. 2014;34:10989–11006. doi: 10.1523/JNEUROSCI.5110-13.2014. PubMed DOI PMC

Wu J., Sabirzhanov B., Stoica B.A., Lipinski M.M., Zhao Z., Zhao S., Ward N., Yang D., Faden A.I. Ablation of the transcription factors E2F1-2 limits neuroinflammation and associated neurological deficits after contusive spinal cord injury. Cell Cycle. 2015;14:3698–3712. doi: 10.1080/15384101.2015.1104436. PubMed DOI PMC

Wu J., Zhao Z., Kumar A., Lipinski M.M., Loane D.J., Stoica B.A., Faden A.I. Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. J. Neurotrauma. 2016;33:1919–1935. doi: 10.1089/neu.2015.4348. PubMed DOI PMC

Wu J., Zhao Z., Zhu X., Renn C.L., Dorsey S.G., Faden A.I. Cell cycle inhibition limits development and maintenance of neuropathic pain following spinal cord injury. Pain. 2016;157:488–503. doi: 10.1097/j.pain.0000000000000393. PubMed DOI PMC

Wang L., Gunduz M.A., Semeano A.T., Yılmaz E.C., Alanazi F.A.H., Imir O.B., Yener U., Arbelaez C.A., Usuga E., Teng Y.D. Coexistence of chronic hyperalgesia and multilevel neuroinflammatory responses after experimental SCI: A systematic approach to profiling neuropathic pain. J. Neuroinflamm. 2022;19:264. doi: 10.1186/s12974-022-02628-2. PubMed DOI PMC

Boada M.D., Martin T.J., Ririe D.G. Nerve injury induced activation of fast-conducting high threshold mechanoreceptors predicts non-reflexive pain related behavior. Neurosci. Lett. 2016;632:44–49. doi: 10.1016/j.neulet.2016.08.029. PubMed DOI PMC

Lee M., Manders T.R., Eberle S.E., Su C., D’amour J., Yang R., Lin H.Y., Deisseroth K., Froemke R.C., Wang J. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J. Neurosci. 2015;35:5247–5259. doi: 10.1523/JNEUROSCI.3494-14.2015. PubMed DOI PMC

Bagot R.C., Parise E.M., Peña C.J., Zhang H.X., Maze I., Chaudhury D., Persaud B., Cachope R., Bolaños-Guzmán C.A., Cheer J.F., et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat. Commun. 2015;6:7062. doi: 10.1038/ncomms8062. PubMed DOI PMC

Xu H., Wu L.J., Wang H., Zhang X., Vadakkan K.I., Kim S.S., Steenland H.W., Zhuo M. Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J. Neurosci. 2008;28:7445–7453. doi: 10.1523/JNEUROSCI.1812-08.2008. PubMed DOI PMC

Alvarado S., Tajerian M., Millecamps M., Suderman M., Stone L.S., Szyf M. Peripheral nerve injury is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Mol. Pain. 2013;9:21. doi: 10.1186/1744-8069-9-21. PubMed DOI PMC

Baliki M.N., Geha P.Y., Fields H.L., Apkarian A.V. Predicting value of pain and analgesia: Nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron. 2010;66:149–160. doi: 10.1016/j.neuron.2010.03.002. PubMed DOI PMC

Moayedi M., Weissman-Fogel I., Crawley A.P., Goldberg M.B., Freeman B.V., Tenenbaum H.C., Davis K.D. Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. NeuroImage. 2011;55:277–286. doi: 10.1016/j.neuroimage.2010.12.013. PubMed DOI

Russo S.J., Nestler E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013;14:609–625. doi: 10.1038/nrn3381. PubMed DOI PMC

Vierck C.J., Hansson P.T., Yezierski R.P. Clinical and pre-clinical pain assessment: Are we measuring the same thing? Pain. 2008;135:7–10. doi: 10.1016/j.pain.2007.12.008. PubMed DOI

Mogil J.S. Animal models of pain: Progress and challenges. Nat. Rev. Neurosci. 2009;10:283–294. doi: 10.1038/nrn2606. PubMed DOI

Fullerton D.T., Harvey R.F., Klein M.H., Howell T. Psychiatric disorders in patients with spinal cord injuries. Arch. Gen. Psychiatry. 1981;38:1369–1371. doi: 10.1001/archpsyc.1981.01780370071010. PubMed DOI

Arango-Lasprilla J.C., Ketchum J.M., Starkweather A., Nicholls E., Wilk A.R. Factors predicting depression among persons with spinal cord injury 1 to 5 years post injury. Neuro Rehabil. 2011;29:9–21. doi: 10.3233/NRE-2011-0672. PubMed DOI PMC

Lazzaro I., Tran Y., Wijesuriya N., Craig A. Central correlates of impaired information processing in people with spinal cord injury. J. Clin. Neurophysiol. 2013;30:59–65. doi: 10.1097/WNP.0b013e31827edb0c. PubMed DOI

Luedtke K., Bouchard S.M., Woller S.A., Funk M.K., Aceves M., Hook M.A. Assessment of depression in a rodent model of spinal cord injury. J. Neurotrauma. 2014;31:1107–1121. doi: 10.1089/neu.2013.3204. PubMed DOI PMC

Maldonado-Bouchard S., Peters K., Woller S.A., Madahian B., Faghihi U., Patel S., Bake S., Hook M.A. Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury. Brain Behav. Immun. 2016;51:176–195. doi: 10.1016/j.bbi.2015.08.009. PubMed DOI PMC

Kaidanovich-Beilin O., Lipina T., Vukobradovic I., Roder J., Woodgett J.R. Assessment of social interaction behaviors. J. Vis. Exp. 2011;48:2473. doi: 10.3791/2473. PubMed DOI PMC

de la Puente B., Zamanillo D., Romero L., Vela J.M., Merlos M., Portillo-Salido E. Pharmacological sensitivity of reflexive and nonreflexive outcomes as a correlate of the sensory and affective responses to visceral pain in mice. Sci. Rep. 2017;7:13428. doi: 10.1038/s41598-017-13987-9. PubMed DOI PMC

Álvarez-Pérez B., Homs J., Bosch-Mola M., Puig T., Reina F., Verdú E., Boadas-Vaello P. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur. J. Pain. 2016;20:341–352. doi: 10.1002/ejp.722. PubMed DOI

Anwar M.A., Al Shehabi T.S., Eid A.H. Inflammogenesis of Secondary Spinal Cord Injury. Front. Cell. Neurosci. 2016;10:98. doi: 10.3389/fncel.2016.00098. PubMed DOI PMC

Rowland J.W., Hawryluk G.W., Kwon B., Fehlings M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus. 2008;25:E2. doi: 10.3171/FOC.2008.25.11.E2. PubMed DOI

Stammers A.T., Liu J., Kwon B.K. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J. Neurosci. Res. 2012;90:782–790. doi: 10.1002/jnr.22820. PubMed DOI

Walker A.K., Kavelaars A., Heijnen C.J., Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol. Rev. 2013;66:80–101. doi: 10.1124/pr.113.008144. PubMed DOI PMC

Yizhar O., Fenno L.E., Prigge M., Schneider F., Davidson T.J., O’Shea D.J., Sohal V.S., Goshen I., Finkelstein J., Paz J.T., et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–178. doi: 10.1038/nature10360. PubMed DOI PMC

Marbach J.J., Lund P. Depression, anhedonia and anxiety in temporomandibular joint and other facial pain syndromes. Pain. 1981;11:73–84. doi: 10.1016/0304-3959(81)90140-8. PubMed DOI

Zhuo M. Neural Mechanisms Underlying Anxiety-Chronic Pain Interactions. Trends Neurosci. 2016;39:136–145. doi: 10.1016/j.tins.2016.01.006. PubMed DOI

Ozaki S., Narita M., Narita M., Iino M., Sugita J., Matsumura Y., Suzuki T. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: Implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J. Neurochem. 2002;82:1192–1198. doi: 10.1046/j.1471-4159.2002.01071.x. PubMed DOI

Apkarian A.V., Sosa Y., Krauss B.R., Thomas P.S., Fredrickson B.E., Levy R.E., Harden R.N., Chialvo D.R. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004;108:129–136. doi: 10.1016/j.pain.2003.12.015. PubMed DOI

Pais-Vieira M., Mendes-Pinto M.M., Lima D., Galhardo V. Cognitive impairment of prefrontal-dependent decision-making in rats after the onset of chronic pain. Neuroscience. 2009;161:671–679. doi: 10.1016/j.neuroscience.2009.04.011. PubMed DOI

Becker S., Kleinböhl D., Baus D., Hölzl R. Operant learning of perceptual sensitization and habituation is impaired in fibromyalgia patients with and without irritable bowel syndrome. Pain. 2011;152:1408–1417. doi: 10.1016/j.pain.2011.02.027. PubMed DOI

Ong W.Y., Stohler C.S., Herr D.R. Role of the prefrontal cortex in pain processing. Mol. Neurobiol. 2019;56:1137–1166. doi: 10.1007/s12035-018-1130-9. PubMed DOI PMC

Vertes R.P. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience. 2006;142:1–20. doi: 10.1016/j.neuroscience.2006.06.027. PubMed DOI

Vogt B.A., Paxinos G. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct. Funct. 2014;219:185–192. doi: 10.1007/s00429-012-0493-3. PubMed DOI

Hayden B.Y., Platt M. L Neurons in anterior cingulate cortex multiplex information about reward and action. J. Neurosci. 2010;30:3339–3346. doi: 10.1523/JNEUROSCI.4874-09.2010. PubMed DOI PMC

Vogt B.A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 2005;6:533–544. doi: 10.1038/nrn1704. PubMed DOI PMC

Ikeda H., Mochizuki K., Murase K. Astrocytes are involved in long-term facilitation of neuronal excitation in the anterior cingulate cortex of mice with inflammatory pain. Pain. 2013;154:2836–2843. doi: 10.1016/j.pain.2013.08.023. PubMed DOI

Fiore N.T., Austin P.J. Peripheral nerve injury triggers neuroinflammation in the medial prefrontal cortex and ventral hippocampus in a subgroup of rats with coincident affective behavioural changes. Neuroscience. 2019;416:147–167. doi: 10.1016/j.neuroscience.2019.08.005. PubMed DOI

Takatsuru Y., Eto K., Kaneko R., Masuda H., Shimokawa N., Koibuchi N., Nabekura J. Critical Role of the Astrocyte for Functional Remodeling in Contralateral Hemisphere of Somatosensory Cortex after Stroke. J. Neurosci. 2013;33:4683–4692. doi: 10.1523/JNEUROSCI.2657-12.2013. PubMed DOI PMC

Masgrau R., Guaza C., Ransohoff R.M., Galea E. Should We Stop Saying ‘Glia’ and ‘Neuroinflammation’? Trends Mol. Med. 2017;23:486–500. doi: 10.1016/j.molmed.2017.04.005. PubMed DOI

Fiore N.T., Austin P.J. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav. Immun. 2016;56:397–411. doi: 10.1016/j.bbi.2016.04.012. PubMed DOI

Austin P.J., Fiore N.T. Supraspinal neuroimmune crosstalk in chronic pain states. Curr. Opin. Physiol. 2019;11:7–15. doi: 10.1016/j.cophys.2019.03.008. DOI

Clark A.K., Malcangio M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front. Cell. Neurosci. 2014;8:121. doi: 10.3389/fncel.2014.00121. PubMed DOI PMC

Verge G.M., Milligan E.D., Maier S.F., Watkins L.R., Naeve G.S., Foster A.C. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 2004;20:1150–1160. doi: 10.1111/j.1460-9568.2004.03593.x. PubMed DOI

Gao Y.J., Ji R.R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 2010;126:56–68. doi: 10.1016/j.pharmthera.2010.01.002. PubMed DOI PMC

Abbadie C., Bhangoo S., De Koninck Y., Malcangio M., Melik-Parsadaniantz S., White F.A. Chemokines and pain mechanisms. Brain Res. Rev. 2009;60:125–134. doi: 10.1016/j.brainresrev.2008.12.002. PubMed DOI PMC

Clark A.K., Yip P.K., Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J. Neurosci. 2009;29:6945–6954. doi: 10.1523/JNEUROSCI.0828-09.2009. PubMed DOI PMC

Clark A.K., Malcangio M. Microglial signalling mechanisms: Cathepsin S and Fractalkine. Exp. Neurol. 2012;234:283–292. doi: 10.1016/j.expneurol.2011.09.012. PubMed DOI

Zhang Z.J., Jiang B.C., Gao Y.J. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell. Mol. Life Sci. 2017;74:3275–3291. doi: 10.1007/s00018-017-2513-1. PubMed DOI PMC

Trettel F., Di Castro M.A., Limatola C. Chemokines: Key Molecules that Orchestrate Communication among Neurons, Microglia and Astrocytes to Preserve Brain Function. Neuroscience. 2020;439:230–240. doi: 10.1016/j.neuroscience.2019.07.035. PubMed DOI

Catalano M., Lauro C., Cipriani R., Chece G., Ponzetta A., Di Angelantonio S., Ragozzino D., Limatola C. CX3CL1 protects neurons against excitotoxicity enhancing GLT-1 activity on astrocytes. J. Neuroimmunol. 2013;263:75–82. doi: 10.1016/j.jneuroim.2013.07.020. PubMed DOI

Limatola C., Ransohoff R.M. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front. Cell. Neurosci. 2014;8:229. doi: 10.3389/fncel.2014.00229. PubMed DOI PMC

Lauro C., Catalano M., Di Paolo E., Chece G., de Costanzo I., Trettel F., Limatola C. Fractalkine/CX3CL1 engages different neuroprotective responses upon selective glutamate receptor overactivation. Front. Cell. Neurosci. 2015;8:472. doi: 10.3389/fncel.2014.00472. PubMed DOI PMC

Castany S., Codony X., Zamanillo D., Merlos M., Verdú E., Boadas-Vaello P. Repeated Sigma-1 Receptor Antagonist MR309 Administration Modulates Central Neuropathic Pain Development After Spinal Cord Injury in Mice. Front. Pharmacol. 2019;10:222. doi: 10.3389/fphar.2019.00222. PubMed DOI PMC

Castany S., Gris G., Vela J.M., Verdú E., Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci. Rep. 2018;8:3873. doi: 10.1038/s41598-018-22217-9. PubMed DOI PMC

Bagó-Mas A., Korimová A., Deulofeu M., Verdú E., Fiol N., Svobodová V., Dubový P., Boadas-Vaello P. Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice. Sci. Rep. 2022;12:14980. doi: 10.1038/s41598-022-19109-4. PubMed DOI PMC

Basso D.M., Fisher L.C., Anderson A.J., Jakeman L.B., McTigue D.M., Popovich P.G. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma. 2006;23:635–659. doi: 10.1089/neu.2006.23.635. PubMed DOI

Chaplan S.R., Bach F.W., Pogrel J.W., Chung J.M., Yaksh T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods. 1994;53:55–63. doi: 10.1016/0165-0270(94)90144-9. PubMed DOI

Hargreaves K., Dubner R., Brown F., Flores C., Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7. PubMed DOI

Bourin M., Hascoët M. The mouse light/dark box test. Eur. J. Pharmacol. 2003;463:55–65. doi: 10.1016/S0014-2999(03)01274-3. PubMed DOI

Merali Z., Levac C., Anisman H. Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice. Biol. Psychiatry. 2003;54:552–565. doi: 10.1016/S0006-3223(02)01827-9. PubMed DOI

Crawley J.N. Behavioral phenotyping of rodents. Comp. Med. 2003;53:140–146. PubMed

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Franklin K.B.J., Paxinos G. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates. Academic Press; Cambridge, MA, USA: 2013.

Dubový P., Klusáková I., Svízenská I. A quantitative immunohistochemical study of the endoneurium in the rat dorsal and ventral spinal roots. Histochem. Cell. Biol. 2002;117:473–480. doi: 10.1007/s00418-002-0411-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...