Transient Reflexive Pain Responses and Chronic Affective Nonreflexive Pain Responses Associated with Neuroinflammation Processes in Both Spinal and Supraspinal Structures in Spinal Cord-Injured Female Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2014-DI-026 ESTEVE - Universitat de Girona
Agency for Administration of University and Research
201705.30.31
La Marató de TV3 Foundation
PubMed
36675275
PubMed Central
PMC9863935
DOI
10.3390/ijms24021761
PII: ijms24021761
Knihovny.cz E-zdroje
- Klíčová slova
- CX3CL1/CX3CR1, central neuropathic pain, chemokines, chronic pain, cytokines, gliosis, neuroinflammation, spinal cord injury,
- MeSH
- mícha MeSH
- myši MeSH
- neuralgie * komplikace MeSH
- neuroglie MeSH
- neurozánětlivé nemoci MeSH
- poranění míchy * komplikace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Central neuropathic pain is not only characterized by reflexive pain responses, but also emotional or affective nonreflexive pain responses, especially in women. Some pieces of evidence suggest that the activation of the neuroimmune system may be contributing to the manifestation of mood disorders in patients with chronic pain conditions, but the mechanisms that contribute to the development and chronicity of CNP and its associated disorders remain poorly understood. This study aimed to determine whether neuroinflammatory factor over-expression in the spinal cord and supraspinal structures may be associated with reflexive and nonreflexive pain response development from acute SCI phase to 12 weeks post-injury in female mice. The results show that transient reflexive responses were observed during the SCI acute phase associated with transient cytokine overexpression in the spinal cord. In contrast, increased nonreflexive pain responses were observed in the chronic phase associated with cytokine overexpression in supraspinal structures, especially in mPFC. In addition, results revealed that besides cytokines, the mPFC showed an increased glial activation as well as CX3CL1/CX3CR1 upregulation in the neurons, suggesting the contribution of neuron-glia crosstalk in the development of nonreflexive pain responses in the chronic spinal cord injury phase.
Zobrazit více v PubMed
van Gorp S., Kessels A.G., Joosten E.A., van Kleef M., Patijn J. Pain prevalence and its determinants after spinal cord injury: A systematic review. Eur. J. Pain. 2015;19:5–14. doi: 10.1002/ejp.522. PubMed DOI
Burke D., Fullen B.M., Stokes D., Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur. J. Pain. 2017;21:29–44. doi: 10.1002/ejp.905. PubMed DOI
National Spinal Cord Injury Statistical Center . Facts and Figures at a Glance. University of Alabama at Birmingham; Birmingham, AL, USA: 2020. [(accessed on 27 November 2022)]. Available online: https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%202020.pdf.
Tashiro S., Nishimura S., Iwai H., Sugai K., Zhang L., Shinozaki M., Iwanami A., Toyama Y., Liu M., Okano H., et al. Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury. Sci. Rep. 2016;6:30898. doi: 10.1038/srep30898. PubMed DOI PMC
Becker S., Gandhi W., Schweinhardt P. Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci. Lett. 2012;520:182–187. doi: 10.1016/j.neulet.2012.03.013. PubMed DOI
Vall J., Batista-Braga V.A., Almeida P.C. Central neuropathic pain and its relation to the quality of life of a person with a traumatic spinal cord injury. Rev. Neurol. 2006;42:525–529. PubMed
Murray R.F., Asghari A., Egorov D.D., Rutkowski S.B., Siddall P.J., Soden R.J., Ruff R. Impact of spinal cord injury on self-perceived pre- and postmorbid cognitive, emotional and physical functioning. Spinal Cord. 2007;45:429–436. doi: 10.1038/sj.sc.3102022. PubMed DOI
Saurí J., Chamarro A., Gilabert A., Gifre M., Rodriguez N., Lopez-Blazquez R., Curcoll L., Benito-Penalva J., Soler D. Depression in Individuals with Traumatic and Nontraumatic Spinal Cord Injury Living in the Community. Arch. Phys. Med. Rehabil. 2017;98:1165–1173. doi: 10.1016/j.apmr.2016.11.011. PubMed DOI
Rivers C.S., Fallah N., Noonan V.K., Whitehurst D.G., Schwartz C.E., Finkelstein J.A., Craven B.C., Ethans K., O’Connell C., RHSCIR Network et al. Health Conditions: Effect on Function, Health-Related Quality of Life, and Life Satisfaction After Traumatic Spinal Cord Injury. A Prospective Observational Registry Cohort Study. Arch. Phys. Med. Rehabil. 2018;99:443–451. doi: 10.1016/j.apmr.2017.06.012. PubMed DOI
Miller L.R., Cano A. Comorbid chronic pain and depression: Who is at risk? J. Pain. 2009;10:619–627. doi: 10.1016/j.jpain.2008.12.007. PubMed DOI
Goesling J., Clauw D.J., Hassett A.L. Pain and depression: An integrative review of neurobiological and psychological factors. Curr. Psychiatry Rep. 2013;15:421. doi: 10.1007/s11920-013-0421-0. PubMed DOI
Liu M.G., Chen J. Preclinical research on pain comorbidity with affective disorders and cognitive deficits: Challenges and perspectives. Prog. Neurobiol. 2014;116:13–32. doi: 10.1016/j.pneurobio.2014.01.003. PubMed DOI
Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., Lanctôt K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry. 2010;67:446–457. doi: 10.1016/j.biopsych.2009.09.033. PubMed DOI
Miller A.H., Haroon E., Raison C.L., Felger J.C. Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depress. Anxiety. 2013;30:297–306. doi: 10.1002/da.22084. PubMed DOI PMC
Anisman H., Merali Z., Poulter M.O., Hayley S. Cytokines as a precipitant of depressive illness: Animal and human studies. Curr. Pharm. Des. 2005;11:963–972. doi: 10.2174/1381612053381701. PubMed DOI
Merali Z., Brennan K., Brau P., Anisman H. Dissociating anorexia and anhedonia elicited by interleukin-1beta: Antidepressant and gender effects on responding for "free chow" and "earned" sucrose intake. Psychopharmacology. 2003;165:413–418. doi: 10.1007/s00213-002-1273-1. PubMed DOI
Austin P.J., Moalem-Taylor G. The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. J. Neuroimmunol. 2010;229:26–50. doi: 10.1016/j.jneuroim.2010.08.013. PubMed DOI
Hulsebosch C.E., Hains B.C., Crown E.D., Carlton S.M. Mechanisms of Chronic Central Neuropathic Pain after Spinal Cord Injury’. Brain Res. Rev. 2009;60:202–213. doi: 10.1016/j.brainresrev.2008.12.010. PubMed DOI PMC
Watson J.L., Hala T.J., Putatunda R., Sannie D., Lepore A.C. Persistent at-level thermal hyperalgesia and tactile allodynia accompany chronic neuronal and astrocyte activation in superficial dorsal horn following mouse cervical contusion spinal cord injury. PLoS ONE. 2014;9:e109099. doi: 10.1371/journal.pone.0109099. PubMed DOI PMC
Wu J., Renn C.L., Faden A.I., Dorsey S.G. TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways. J. Neurosci. 2013;33:12447–12463. doi: 10.1523/JNEUROSCI.0846-13.2013. PubMed DOI PMC
Wu J., Stoica B.A., Luo T., Sabirzhanov B., Zhao Z., Guanciale K., Nayar S.K., Foss C.A., Pomper M.G., Faden A.I. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation. Cell Cycle. 2014;13:2446–2458. doi: 10.4161/cc.29420. PubMed DOI PMC
Wu J., Zhao Z., Sabirzhanov B., Stoica B.A., Kumar A., Luo T., Skovira J., Faden A.I. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: Role of cell cycle pathways. J. Neurosci. 2014;34:10989–11006. doi: 10.1523/JNEUROSCI.5110-13.2014. PubMed DOI PMC
Wu J., Sabirzhanov B., Stoica B.A., Lipinski M.M., Zhao Z., Zhao S., Ward N., Yang D., Faden A.I. Ablation of the transcription factors E2F1-2 limits neuroinflammation and associated neurological deficits after contusive spinal cord injury. Cell Cycle. 2015;14:3698–3712. doi: 10.1080/15384101.2015.1104436. PubMed DOI PMC
Wu J., Zhao Z., Kumar A., Lipinski M.M., Loane D.J., Stoica B.A., Faden A.I. Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. J. Neurotrauma. 2016;33:1919–1935. doi: 10.1089/neu.2015.4348. PubMed DOI PMC
Wu J., Zhao Z., Zhu X., Renn C.L., Dorsey S.G., Faden A.I. Cell cycle inhibition limits development and maintenance of neuropathic pain following spinal cord injury. Pain. 2016;157:488–503. doi: 10.1097/j.pain.0000000000000393. PubMed DOI PMC
Wang L., Gunduz M.A., Semeano A.T., Yılmaz E.C., Alanazi F.A.H., Imir O.B., Yener U., Arbelaez C.A., Usuga E., Teng Y.D. Coexistence of chronic hyperalgesia and multilevel neuroinflammatory responses after experimental SCI: A systematic approach to profiling neuropathic pain. J. Neuroinflamm. 2022;19:264. doi: 10.1186/s12974-022-02628-2. PubMed DOI PMC
Boada M.D., Martin T.J., Ririe D.G. Nerve injury induced activation of fast-conducting high threshold mechanoreceptors predicts non-reflexive pain related behavior. Neurosci. Lett. 2016;632:44–49. doi: 10.1016/j.neulet.2016.08.029. PubMed DOI PMC
Lee M., Manders T.R., Eberle S.E., Su C., D’amour J., Yang R., Lin H.Y., Deisseroth K., Froemke R.C., Wang J. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J. Neurosci. 2015;35:5247–5259. doi: 10.1523/JNEUROSCI.3494-14.2015. PubMed DOI PMC
Bagot R.C., Parise E.M., Peña C.J., Zhang H.X., Maze I., Chaudhury D., Persaud B., Cachope R., Bolaños-Guzmán C.A., Cheer J.F., et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat. Commun. 2015;6:7062. doi: 10.1038/ncomms8062. PubMed DOI PMC
Xu H., Wu L.J., Wang H., Zhang X., Vadakkan K.I., Kim S.S., Steenland H.W., Zhuo M. Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J. Neurosci. 2008;28:7445–7453. doi: 10.1523/JNEUROSCI.1812-08.2008. PubMed DOI PMC
Alvarado S., Tajerian M., Millecamps M., Suderman M., Stone L.S., Szyf M. Peripheral nerve injury is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Mol. Pain. 2013;9:21. doi: 10.1186/1744-8069-9-21. PubMed DOI PMC
Baliki M.N., Geha P.Y., Fields H.L., Apkarian A.V. Predicting value of pain and analgesia: Nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron. 2010;66:149–160. doi: 10.1016/j.neuron.2010.03.002. PubMed DOI PMC
Moayedi M., Weissman-Fogel I., Crawley A.P., Goldberg M.B., Freeman B.V., Tenenbaum H.C., Davis K.D. Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. NeuroImage. 2011;55:277–286. doi: 10.1016/j.neuroimage.2010.12.013. PubMed DOI
Russo S.J., Nestler E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013;14:609–625. doi: 10.1038/nrn3381. PubMed DOI PMC
Vierck C.J., Hansson P.T., Yezierski R.P. Clinical and pre-clinical pain assessment: Are we measuring the same thing? Pain. 2008;135:7–10. doi: 10.1016/j.pain.2007.12.008. PubMed DOI
Mogil J.S. Animal models of pain: Progress and challenges. Nat. Rev. Neurosci. 2009;10:283–294. doi: 10.1038/nrn2606. PubMed DOI
Fullerton D.T., Harvey R.F., Klein M.H., Howell T. Psychiatric disorders in patients with spinal cord injuries. Arch. Gen. Psychiatry. 1981;38:1369–1371. doi: 10.1001/archpsyc.1981.01780370071010. PubMed DOI
Arango-Lasprilla J.C., Ketchum J.M., Starkweather A., Nicholls E., Wilk A.R. Factors predicting depression among persons with spinal cord injury 1 to 5 years post injury. Neuro Rehabil. 2011;29:9–21. doi: 10.3233/NRE-2011-0672. PubMed DOI PMC
Lazzaro I., Tran Y., Wijesuriya N., Craig A. Central correlates of impaired information processing in people with spinal cord injury. J. Clin. Neurophysiol. 2013;30:59–65. doi: 10.1097/WNP.0b013e31827edb0c. PubMed DOI
Luedtke K., Bouchard S.M., Woller S.A., Funk M.K., Aceves M., Hook M.A. Assessment of depression in a rodent model of spinal cord injury. J. Neurotrauma. 2014;31:1107–1121. doi: 10.1089/neu.2013.3204. PubMed DOI PMC
Maldonado-Bouchard S., Peters K., Woller S.A., Madahian B., Faghihi U., Patel S., Bake S., Hook M.A. Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury. Brain Behav. Immun. 2016;51:176–195. doi: 10.1016/j.bbi.2015.08.009. PubMed DOI PMC
Kaidanovich-Beilin O., Lipina T., Vukobradovic I., Roder J., Woodgett J.R. Assessment of social interaction behaviors. J. Vis. Exp. 2011;48:2473. doi: 10.3791/2473. PubMed DOI PMC
de la Puente B., Zamanillo D., Romero L., Vela J.M., Merlos M., Portillo-Salido E. Pharmacological sensitivity of reflexive and nonreflexive outcomes as a correlate of the sensory and affective responses to visceral pain in mice. Sci. Rep. 2017;7:13428. doi: 10.1038/s41598-017-13987-9. PubMed DOI PMC
Álvarez-Pérez B., Homs J., Bosch-Mola M., Puig T., Reina F., Verdú E., Boadas-Vaello P. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur. J. Pain. 2016;20:341–352. doi: 10.1002/ejp.722. PubMed DOI
Anwar M.A., Al Shehabi T.S., Eid A.H. Inflammogenesis of Secondary Spinal Cord Injury. Front. Cell. Neurosci. 2016;10:98. doi: 10.3389/fncel.2016.00098. PubMed DOI PMC
Rowland J.W., Hawryluk G.W., Kwon B., Fehlings M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus. 2008;25:E2. doi: 10.3171/FOC.2008.25.11.E2. PubMed DOI
Stammers A.T., Liu J., Kwon B.K. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J. Neurosci. Res. 2012;90:782–790. doi: 10.1002/jnr.22820. PubMed DOI
Walker A.K., Kavelaars A., Heijnen C.J., Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol. Rev. 2013;66:80–101. doi: 10.1124/pr.113.008144. PubMed DOI PMC
Yizhar O., Fenno L.E., Prigge M., Schneider F., Davidson T.J., O’Shea D.J., Sohal V.S., Goshen I., Finkelstein J., Paz J.T., et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–178. doi: 10.1038/nature10360. PubMed DOI PMC
Marbach J.J., Lund P. Depression, anhedonia and anxiety in temporomandibular joint and other facial pain syndromes. Pain. 1981;11:73–84. doi: 10.1016/0304-3959(81)90140-8. PubMed DOI
Zhuo M. Neural Mechanisms Underlying Anxiety-Chronic Pain Interactions. Trends Neurosci. 2016;39:136–145. doi: 10.1016/j.tins.2016.01.006. PubMed DOI
Ozaki S., Narita M., Narita M., Iino M., Sugita J., Matsumura Y., Suzuki T. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: Implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J. Neurochem. 2002;82:1192–1198. doi: 10.1046/j.1471-4159.2002.01071.x. PubMed DOI
Apkarian A.V., Sosa Y., Krauss B.R., Thomas P.S., Fredrickson B.E., Levy R.E., Harden R.N., Chialvo D.R. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004;108:129–136. doi: 10.1016/j.pain.2003.12.015. PubMed DOI
Pais-Vieira M., Mendes-Pinto M.M., Lima D., Galhardo V. Cognitive impairment of prefrontal-dependent decision-making in rats after the onset of chronic pain. Neuroscience. 2009;161:671–679. doi: 10.1016/j.neuroscience.2009.04.011. PubMed DOI
Becker S., Kleinböhl D., Baus D., Hölzl R. Operant learning of perceptual sensitization and habituation is impaired in fibromyalgia patients with and without irritable bowel syndrome. Pain. 2011;152:1408–1417. doi: 10.1016/j.pain.2011.02.027. PubMed DOI
Ong W.Y., Stohler C.S., Herr D.R. Role of the prefrontal cortex in pain processing. Mol. Neurobiol. 2019;56:1137–1166. doi: 10.1007/s12035-018-1130-9. PubMed DOI PMC
Vertes R.P. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience. 2006;142:1–20. doi: 10.1016/j.neuroscience.2006.06.027. PubMed DOI
Vogt B.A., Paxinos G. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct. Funct. 2014;219:185–192. doi: 10.1007/s00429-012-0493-3. PubMed DOI
Hayden B.Y., Platt M. L Neurons in anterior cingulate cortex multiplex information about reward and action. J. Neurosci. 2010;30:3339–3346. doi: 10.1523/JNEUROSCI.4874-09.2010. PubMed DOI PMC
Vogt B.A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 2005;6:533–544. doi: 10.1038/nrn1704. PubMed DOI PMC
Ikeda H., Mochizuki K., Murase K. Astrocytes are involved in long-term facilitation of neuronal excitation in the anterior cingulate cortex of mice with inflammatory pain. Pain. 2013;154:2836–2843. doi: 10.1016/j.pain.2013.08.023. PubMed DOI
Fiore N.T., Austin P.J. Peripheral nerve injury triggers neuroinflammation in the medial prefrontal cortex and ventral hippocampus in a subgroup of rats with coincident affective behavioural changes. Neuroscience. 2019;416:147–167. doi: 10.1016/j.neuroscience.2019.08.005. PubMed DOI
Takatsuru Y., Eto K., Kaneko R., Masuda H., Shimokawa N., Koibuchi N., Nabekura J. Critical Role of the Astrocyte for Functional Remodeling in Contralateral Hemisphere of Somatosensory Cortex after Stroke. J. Neurosci. 2013;33:4683–4692. doi: 10.1523/JNEUROSCI.2657-12.2013. PubMed DOI PMC
Masgrau R., Guaza C., Ransohoff R.M., Galea E. Should We Stop Saying ‘Glia’ and ‘Neuroinflammation’? Trends Mol. Med. 2017;23:486–500. doi: 10.1016/j.molmed.2017.04.005. PubMed DOI
Fiore N.T., Austin P.J. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav. Immun. 2016;56:397–411. doi: 10.1016/j.bbi.2016.04.012. PubMed DOI
Austin P.J., Fiore N.T. Supraspinal neuroimmune crosstalk in chronic pain states. Curr. Opin. Physiol. 2019;11:7–15. doi: 10.1016/j.cophys.2019.03.008. DOI
Clark A.K., Malcangio M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front. Cell. Neurosci. 2014;8:121. doi: 10.3389/fncel.2014.00121. PubMed DOI PMC
Verge G.M., Milligan E.D., Maier S.F., Watkins L.R., Naeve G.S., Foster A.C. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci. 2004;20:1150–1160. doi: 10.1111/j.1460-9568.2004.03593.x. PubMed DOI
Gao Y.J., Ji R.R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 2010;126:56–68. doi: 10.1016/j.pharmthera.2010.01.002. PubMed DOI PMC
Abbadie C., Bhangoo S., De Koninck Y., Malcangio M., Melik-Parsadaniantz S., White F.A. Chemokines and pain mechanisms. Brain Res. Rev. 2009;60:125–134. doi: 10.1016/j.brainresrev.2008.12.002. PubMed DOI PMC
Clark A.K., Yip P.K., Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J. Neurosci. 2009;29:6945–6954. doi: 10.1523/JNEUROSCI.0828-09.2009. PubMed DOI PMC
Clark A.K., Malcangio M. Microglial signalling mechanisms: Cathepsin S and Fractalkine. Exp. Neurol. 2012;234:283–292. doi: 10.1016/j.expneurol.2011.09.012. PubMed DOI
Zhang Z.J., Jiang B.C., Gao Y.J. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell. Mol. Life Sci. 2017;74:3275–3291. doi: 10.1007/s00018-017-2513-1. PubMed DOI PMC
Trettel F., Di Castro M.A., Limatola C. Chemokines: Key Molecules that Orchestrate Communication among Neurons, Microglia and Astrocytes to Preserve Brain Function. Neuroscience. 2020;439:230–240. doi: 10.1016/j.neuroscience.2019.07.035. PubMed DOI
Catalano M., Lauro C., Cipriani R., Chece G., Ponzetta A., Di Angelantonio S., Ragozzino D., Limatola C. CX3CL1 protects neurons against excitotoxicity enhancing GLT-1 activity on astrocytes. J. Neuroimmunol. 2013;263:75–82. doi: 10.1016/j.jneuroim.2013.07.020. PubMed DOI
Limatola C., Ransohoff R.M. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front. Cell. Neurosci. 2014;8:229. doi: 10.3389/fncel.2014.00229. PubMed DOI PMC
Lauro C., Catalano M., Di Paolo E., Chece G., de Costanzo I., Trettel F., Limatola C. Fractalkine/CX3CL1 engages different neuroprotective responses upon selective glutamate receptor overactivation. Front. Cell. Neurosci. 2015;8:472. doi: 10.3389/fncel.2014.00472. PubMed DOI PMC
Castany S., Codony X., Zamanillo D., Merlos M., Verdú E., Boadas-Vaello P. Repeated Sigma-1 Receptor Antagonist MR309 Administration Modulates Central Neuropathic Pain Development After Spinal Cord Injury in Mice. Front. Pharmacol. 2019;10:222. doi: 10.3389/fphar.2019.00222. PubMed DOI PMC
Castany S., Gris G., Vela J.M., Verdú E., Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci. Rep. 2018;8:3873. doi: 10.1038/s41598-018-22217-9. PubMed DOI PMC
Bagó-Mas A., Korimová A., Deulofeu M., Verdú E., Fiol N., Svobodová V., Dubový P., Boadas-Vaello P. Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice. Sci. Rep. 2022;12:14980. doi: 10.1038/s41598-022-19109-4. PubMed DOI PMC
Basso D.M., Fisher L.C., Anderson A.J., Jakeman L.B., McTigue D.M., Popovich P.G. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma. 2006;23:635–659. doi: 10.1089/neu.2006.23.635. PubMed DOI
Chaplan S.R., Bach F.W., Pogrel J.W., Chung J.M., Yaksh T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods. 1994;53:55–63. doi: 10.1016/0165-0270(94)90144-9. PubMed DOI
Hargreaves K., Dubner R., Brown F., Flores C., Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7. PubMed DOI
Bourin M., Hascoët M. The mouse light/dark box test. Eur. J. Pharmacol. 2003;463:55–65. doi: 10.1016/S0014-2999(03)01274-3. PubMed DOI
Merali Z., Levac C., Anisman H. Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice. Biol. Psychiatry. 2003;54:552–565. doi: 10.1016/S0006-3223(02)01827-9. PubMed DOI
Crawley J.N. Behavioral phenotyping of rodents. Comp. Med. 2003;53:140–146. PubMed
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Franklin K.B.J., Paxinos G. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates. Academic Press; Cambridge, MA, USA: 2013.
Dubový P., Klusáková I., Svízenská I. A quantitative immunohistochemical study of the endoneurium in the rat dorsal and ventral spinal roots. Histochem. Cell. Biol. 2002;117:473–480. doi: 10.1007/s00418-002-0411-5. PubMed DOI