Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE

. 2021 Aug 31 ; 22 (17) : . [epub] 20210831

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34502357

Grantová podpora
GA 18-03847S Grantová Agentura České Republiky
APVV-17-0373 and APVV-18-0302 Agentúra na Podporu Výskumu a Vývoja
PICT 2015-1769 Agencia Nacional de Promoción Científica y Tecnológica
"FIT" CZ.02.1.01/0.0/0.0/15_003/0000495 Ministerstvo Školství, Mládeže a Tělovýchovy
. RO0518 Ministerstvo Zemědělství

A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.

Zobrazit více v PubMed

Eikelboom W.S., Van den Berg E., Coesmans M., Singleton E.H., Papma J.M. Neuropsychiatric and Cognitive Symptoms in Alzheimer’s Disease: A Study in Ad Biomarker Confirmed Patients across the Clinical Spectrum. Alzheimer’s Dement. 2019;15:567–568. doi: 10.1016/j.jalz.2019.06.4512. DOI

Lopez O.L., DeKosky S.T. Clinical symptoms in Alzheimer’s disease. Handb. Clin. Neurol. 2008;89:207–216. doi: 10.1016/S0072-9752(07)01219-5. PubMed DOI

Lyketsos C.G., Carrillo M.C., Ryan J.M., Khachaturian A.S., Trzepacz P., Amatniek J., Cedarbaum J., Brashear R., Milleri D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2011;7:532–539. doi: 10.1016/j.jalz.2011.05.2410. PubMed DOI PMC

Alzheimer’s Association 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’S Assoc. 2020;16:391–460. doi: 10.1002/alz.12068. PubMed DOI

Francis P., Palmer A., Snape M., Wilcock G. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry. 1999;66:137–147. doi: 10.1136/jnnp.66.2.137. PubMed DOI PMC

Hampel H., Mesulam M.M., Cuello A.C., Khachaturian A.S., Vergallo A., Farlow M.R., Snyder P.J., Giacobini E., Khachaturian Z.S. Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research. J. Prev. Alzheimer’s Dis. 2019;6:2–15. doi: 10.1016/j.jalz.2017.08.016. PubMed DOI

Blessed G., Tomlinson B.E., Roth M. The Association between Quantitative Measures of Dementia and of Senile Change in the Cerebral Grey Matter of Elderly Subjects. Br. J. Psychiatry. 1968;114:797–811. doi: 10.1192/bjp.114.512.797. PubMed DOI

Eftekharzadeh B., Daigle J.G., Kapinos L.E., Coyne A., Schiantarelli J., Carlomagno Y., Cook C., Miller S.J., Dujardin S., Tepper M., et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron. 2018;99:925–940. doi: 10.1016/j.neuron.2018.07.039. PubMed DOI PMC

Huang W.J., Zhang X., Chen W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016;4:519–522. doi: 10.3892/br.2016.630. PubMed DOI PMC

Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lambb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. 2018;4:575–590. doi: 10.1016/j.trci.2018.06.014. PubMed DOI PMC

Colovic M.B., Krstic D.Z., Lazarević-Pašti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase Inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC

Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s Disease. Prim. Care Companion CNS Disord. 2013;15 doi: 10.4088/PCC.12r01412. PCC.12r01412. PubMed DOI PMC

Darvesh S. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer’s Disease. Curr. Alzheimer Res. 2016;13:1173–1177. doi: 10.2174/1567205013666160404120542. PubMed DOI

Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T.A., Lee B., Ingram D.K., Lahiri D.K. A New Therapeutic Target in Alzheimer’s Disease Treatment: Attention to Butyrylcholinesterase. Curr. Med Res. Opin. 2001;17:159–165. doi: 10.1185/03007990152673800. PubMed DOI

Mushtaq G., Greig N.H., Khan J.A., Kamal M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets. 2014;13:1432–1439. doi: 10.2174/1871527313666141023141545. PubMed DOI PMC

Arendt T., Brückner M.K., Lange M., Bigl V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development—A study of molecular forms. Neurochem. Int. 1992;21:381–396. doi: 10.1016/0197-0186(92)90189-X. PubMed DOI

Mesulam M.M., Guillozet A., Shaw P., Levey A., Duysen E.G., Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. 2002;110:627–639. doi: 10.1016/S0306-4522(01)00613-3. PubMed DOI

Li B., Duysen E.G., Carlson M., Lockridge O. The Butyrylcholinesterase Knockout Mouse as a Model for Human Butyrylcholinesterase Deficiency. J. Pharmacol. Exp. Ther. 2008;324:1146–1154. doi: 10.1124/jpet.107.133330. PubMed DOI

Holmes C., Ballard C., Lehmann D., Smith A.D., Beaumont H., Day I.N., Khan M.N., Lovestone S., McCulley M., Morris C.M., et al. Rate of Progression of Cognitive Decline in Alzheimer’s Disease: Effect of Butyrylcholinesterase K Gene Variation. J. Neurol. Neurosur. Psychiatry. 2005;76:640–643. doi: 10.1136/jnnp.2004.039321. PubMed DOI PMC

Hartmann J., Kiewert C., Duysen E.G., Lockridge O., Greig N.H., Klein J. Excessive Hippocampal Acetylcholine Levels in Acetylcholinesterase-Deficient Mice Are Moderated by Butyrylcholinesterase Activity. J. Neurochem. 2007;100:1421–1429. doi: 10.1111/j.1471-4159.2006.04347.x. PubMed DOI

Greig N.H., Utsuki T., Ingram D.K., Wang Y., Pepeu G., Scali C., Yu Q.S., Mamczarz J., Holloway H.W., Giordano T., et al. Selective Butyrylcholinesterase Inhibition Elevates Brain Acetylcholine, Augments Learning and Lowers Alzheimer B-Amyloid Peptide in Rodent. Proc. Natl. Acad. Sci. USA. 2005;102:17213–17218. doi: 10.1073/pnas.0508575102. PubMed DOI PMC

Furukawa-Hibi Y., Alkam T., Nitta A., Matsuyama A., Mizoguchi H., Suzuki K., Moussaoui S., Yu Q.S., Greig N.H., Nagai T., et al. Butyrylcholinesterase Inhibitors Ameliorate Cognitive Dysfunction Induced by Amyloid-B Peptide in Mice. Behav. Brain Res. 2011;225:222–229. doi: 10.1016/j.bbr.2011.07.035. PubMed DOI PMC

Greig N.H., Yu Q., Brossi A., Soncrant T.T., Hausman M. Highly Selective Butyrylcholinesterase Inhibitors for the Treatment and Diagnosis of Alzheimer’s Disease and Dementias. 20020094999. U.S. Patent. 2002 Jul 18;

Giacobini E. Cholinesterase Inhibitors: New Roles and Therapeutic Alternatives. J. Ital. Pharmacol. Soc. 2004;50:433–440. PubMed

McGleenon B.M., Dynan K.B., Passmore A.P. Acetylcholinesterase Inhibitors in Alzheimer’s Disease. Br. J. Clin. Pharmacol. 1999;48:471–480. doi: 10.1046/j.1365-2125.1999.00026.x. PubMed DOI PMC

Ballard C., Greig N., Guillozet-Bongaarts A., Enz A., Darvesh S. Cholinesterases: Roles in the Brain During Health and Disease. Curr. Alzheimer Res. 2005;2:307–318. doi: 10.2174/1567205054367838. PubMed DOI

Kandiah N., Pai M.C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC

Dighe S.N., Tippana M., van Akker S., Collet T.A. Structure-based scaffold repurposing toward the discovery of novel cholinesterase inhibitors. ACS Omega. 2020;5:30971–30979. doi: 10.1021/acsomega.0c03848. PubMed DOI PMC

Lane R.M., Potkin S.G.A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI

Alcantara V.M., Chautard-Freire-Maia E.A., Scartezini M., Cerci M.S.J., Braun-Prado K., Picheth G. Butyrylcholinesterase Activity and Risk Factors for Coronary Artery Disease. Scand. J. Clin. Lab. Investig. 2002;62:399–404. doi: 10.1080/00365510260296564. PubMed DOI

Stojanov M., Stefanovič A., Džingalaševič G., Mandič-Radič S., Prostran M. Butyrylcholinesterase Activity in Young Men and Women: Association with Cardiovascular Risk Factors. Clin. Biochem. 2011;44:623–626. doi: 10.1016/j.clinbiochem.2011.03.028. PubMed DOI

Iwasaki T., Yoneda M., Nakajima A., Terauchi Y. Serum Butyrylcholinesterase is Strongly Associated with Adiposity, the Serum Lipid Profile and Insulin Resistance. Intern. Med. 2007;46:1633–1639. doi: 10.2169/internalmedicine.46.0049. PubMed DOI

Sato K.K., Hayashi T., Maeda I., Koh H., Harita N., Uehara S., Onishi Y., Oue K., Nakamura Y., Endo G., et al. Serum Butyrylcholinesterase and the Risk of Future Type 2 Diabetes: The Kansai Healthcare Study. Clin. Endocrinol. 2014;80:362–367. doi: 10.1111/cen.12171. PubMed DOI

Li B., Duysen E.G., Lockridge O. The Butyrylcholinesterase Knockout Mouse is Obese on a High-Fat Diet. Chem.-Biol. Interact. 2008;175:88–91. doi: 10.1016/j.cbi.2008.03.009. PubMed DOI

Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol. Med. Rep. 2019;20:1479–1487. doi: 10.3892/mmr.2019.10374. PubMed DOI PMC

Brus B., Košak U., Turk S., Pišlar A., Coquelle N., Kos J., Stojan J., Colletier J.P., Gobec S.J. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. Med. Chem. 2014;57:8167–8179. doi: 10.1021/jm501195e. PubMed DOI

Sawatzky E., Wehle S., Kling B., Wendrich J., Bringmann G., Christoph A., Sotriffer C.A., Heilmann J., Decker M. Discovery of highly selective and nanomolar carbamate-based butyrylcholinesterase inhibitors by rational investigation into their inhibition mode. J. Med. Chem. 2016;59:2067–2082. doi: 10.1021/acs.jmedchem.5b01674. PubMed DOI

Kumar A., Pintus F., Di Petrillo A., Medda A.R., Caria P., Matos M.J., Vina D., Pieroni E., Delogu F., Era B., et al. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Sci. Rep. 2018;8:4424. doi: 10.1038/s41598-018-22747-2. PubMed DOI PMC

Wu C., Tu Y., Li Z., Li Y. Highly selective carbamate-based butyrylcholinesterase inhibitors derived from a naturally occurring pyranoisoflavone. Bioorg. Chem. 2019;88:102949. doi: 10.1016/j.bioorg.2019.102949. PubMed DOI

Hoffmann M., Stiller C., Endres E., Scheiner M., Gunesch S., Sotriffer C., Maurice T., Decker M. Highly selective butyrylcholinesterase inhibitors with tunable duration of action by chemical modification of transferable carbamate units exhibit pronounced neuroprotective effect in an Alzheimer’s disease mouse model. J. Med. Chem. 2019;62:9116–9140. doi: 10.1021/acs.jmedchem.9b01012. PubMed DOI

Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC

Kielczewska U., Jorda R., Gonzalez G., Morzycki J.W., Ajani H., Svrckova K., Stepankova S., Wojtkielewicz A. The synthesis and cholinesterase inhibitory activities of solasodine analogues with seven-membered F ring. J. Steroid Biochem. Mol. Biol. 2021;205:105776. doi: 10.1016/j.jsbmb.2020.105776. PubMed DOI

Jann M.W., Shirley K.L., Small G.W. Clinical Pharmacokinetics and Pharmacodynamics of Cholinesterase Inhibitors. Clin. Pharmacokinet. 2002;41:719–739. doi: 10.2165/00003088-200241100-00003. PubMed DOI

Bartolini M., Cavrini V., Andrisano V. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. J. Chromatogr. A. 2007;1144:102–110. doi: 10.1016/j.chroma.2006.11.029. PubMed DOI

Wilson I.B., Hatch M.A., Ginsburg S. Carbamylation of Acetylcholinesterase. J. Biol. Chem. 1960;235:2312–2315. doi: 10.1016/S0021-9258(18)64619-8. PubMed DOI

Wilson I.B., Harrison M.A., Ginsburg S. Carbamyl derivatives of acetylcholinesterase. J. Biol. Chem. 1961;236:1498–1500. doi: 10.1016/S0021-9258(18)64204-8. PubMed DOI

Xie Q., Zheng Z., Shao B., Fu W., Xia Z., Li W., Sun J., Zheng W., Zhang W., Sheng W., et al. Pharmacophore-based design and discovery of (−)-meptazinol carbamates as dual modulators of cholinesterase and amyloidogenesis. J. Enzym. Inhib. Med. Chem. 2017;32:659–671. doi: 10.1080/14756366.2016.1265521. PubMed DOI PMC

Bar-On P., Millard C.B., Harel M., Dvir H., Enz A., Sussman J.L., Silman I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry. 2002;41:3555–3564. doi: 10.1021/bi020016x. PubMed DOI

Yamali C., Gul H.I., Kazaz C., Levent S., Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg. Chem. 2020;96:103627. doi: 10.1016/j.bioorg.2020.103627. PubMed DOI

Bag S., Tulsan R., Sood A., Cho H., Redjeb W., Zhou H., LeVine B., Török M. Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2015;25:626–630. doi: 10.1016/j.bmcl.2014.12.006. PubMed DOI

Košak U., Brus B., Knez D., Šink R., Žakelj S., Trontelj J., Pišlar A., Šlenc J., Gobec M., Živin M., et al. Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Sci. Rep. 2016;6:39495. doi: 10.1038/srep39495. PubMed DOI PMC

Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC

Imramovsky A., Pejchal V., Stepankova S., Vorcakova K., Jampilek J., Vanco J., Simunek P., Kralovec K., Bruckova L., Mandikova J., et al. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013;21:1735–1748. doi: 10.1016/j.bmc.2013.01.052. PubMed DOI

Bader R.F.W. Atoms in molecules. Acc. Chem. Res. 1985;18:9–15. doi: 10.1021/ar00109a003. DOI

Rodriguez M., Llinares M., Doulut S., Heitz A., Martinez J. A facile synthesis of chiral of chiral N-protected β-amino alcohols. Tet. Lett. 1991;32:923–926. doi: 10.1016/S0040-4039(00)92121-X. DOI

Dubiella C., Cui H., Gersch M., Brouwer A.J., Sieber S.A., Kruger A., Liskamp R.M.J., Groll M. Selective inhibition of the immunoproteasome by ligand-induced crosslinking of the active site. Angew. Chem. Int. Ed. Engl. 2014;53:11969–11973. doi: 10.1002/anie.201406964. PubMed DOI

Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

DrugBank—Rivastigmine. [(accessed on 19 June 2021)]; Available online: https://go.drugbank.com/drugs/DB00989.

Ariel N., Ordentlich A., Barak D., Bino T., Velan B., Shafferman A. The ‘aromatic patch’ of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem. J. 1998;335:95–102. doi: 10.1042/bj3350095. PubMed DOI PMC

Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI

Rojas S., Parravicini O., Vettorazzi M., Tosso R., Garro A., Gutierrez L., Andujar S., Enriz R. Combined MD/QTAIM techniques to evaluate ligand-receptor interactions. Scope and limitations. Eur. J. Med. Chem. 2020;208:112792. doi: 10.1016/j.ejmech.2020.112792. PubMed DOI

Campos L.E., Garibotto F., Angelina E., Kos J., Gonec T., Marvanova P., Vettorazzi M., Oravec M., Jendrzejewska I., Jampilek J., et al. Hydroxynaphthalenecarboxamides and Substituted Piperazinylpropandiols, Two New Series of BRAF Inhibitors. A theoretical and experimental study. Bioorg. Chem. 2020;103:104145. doi: 10.1016/j.bioorg.2020.104145. PubMed DOI

Vettorazzi M., Insuasty D., Lima S., Gutierrez L., Nogueras M., Marchal A., Abonia R., Andujar S., Spiegel S., Cobo J., et al. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors. Bioorg. Chem. 2020;94:103414. doi: 10.1016/j.bioorg.2019.103414. PubMed DOI PMC

Vettorazzi M., Angelina E., Lima S., Gonec T., Otevrel J., Marvanova P., Padrtova T., Mokry P., Bobal P., Acosta L.M., et al. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur. J. Med. Chem. 2017;139:461–481. doi: 10.1016/j.ejmech.2017.08.017. PubMed DOI PMC

Tosso R.D., Andujar S.A., Gutierrez L., Angelina E., Rodriguez R., Nogueras M., Baldoni H., Suvire F.D., Cobo J., Enriz R.D. Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. J. Chem. Inf. Model. 2013;53:2018–2032. doi: 10.1021/ci400178h. PubMed DOI

Padrtova T., Marvanova P., Odehnalova K., Kubinova R., Parravicini O., Garro A., Enriz R., Humpa O., Oravec M., Mokry P. Synthesis, analysis, cholinesterase-inhibiting activity and molecular modelling studies of 3-(dialkylamino)-2-hydroxypropyl 4-[(alkoxy-carbonyl)amino]benzoates and their quaternary ammonium salts. Molecules. 2017;22:2048. doi: 10.3390/molecules22122048. PubMed DOI PMC

Parravicini O., Angelina E., Spinelli R., Garibotto F., Siano A.S., Vila L., Cabedo N., Cortes D., Enriz R.D. Design, synthesis, biological evaluation and molecular modelling of substituted pyrrolo[2,1-a]isoquinolinone derivatives: Discovery of potent inhibitors of AChE and BChE. New J. Chem. 2021 doi: 10.1039/D1NJ00345C. in press. DOI

DrugBank—Galantamine. [(accessed on 19 June 2021)]; Available online: https://go.drugbank.com/drugs/DB00674.

Ortiz J.E., Garro A., Pigni N.B., Agüero M.B., Roitman G., Slanis A., Enriz R.D., Feresin G.E., Bastida J., Tapia A. Cholinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of hieronymiella species. Phytomedicine. 2018;39:66–74. doi: 10.1016/j.phymed.2017.12.020. PubMed DOI

Ortiz J.E., Pigni N.B., Andujar S.A., Roitman G., Suvire F.D., Enriz R.D., Tapia A., Bastida J., Feresin G.E. Alkaloids from hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016;79:1241–1248. doi: 10.1021/acs.jnatprod.5b00785. PubMed DOI

Greenblatt H.M., Kryger G., Lewis T., Silman I., Sussman J.L. Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3 Å resolution. FEBS Lett. 1999;463:321–326. doi: 10.1016/S0014-5793(99)01637-3. PubMed DOI

Carmona-Viglianco F., Zaragoza-Puchol D., Parravicini O., Garro A., Enriz R.D., Feresin G.E., Kurina-Sanz M., Orden A.A. Synthesis, biological evaluation and molecular modeling studies of substituted N-benzyl-2-phenylethanamines as cholinesterase inhibitors. New J. Chem. 2020;44:9466–9476. doi: 10.1039/D0NJ00282H. DOI

Sussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science. 1991;253:872–879. doi: 10.1126/science.1678899. PubMed DOI

Gibney G., Camp S., Dionne M., MacPhee-Quigley K., Taylor P. Mutagenesis of essential functional residues in acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1990;87:7546–7550. doi: 10.1073/pnas.87.19.7546. PubMed DOI PMC

Balasubramanian A.S., Bhanumathy C.D. Noncholinergic functions of cholinesterases. FASEB J. 1993;7:1354–1358. doi: 10.1096/fasebj.7.14.8224608. PubMed DOI

Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Van de Waterbeemd H., Gifford E. ADMET in silico modeling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. PubMed DOI

Kerns E.H., Di L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.

Wermuth C., Aldous D., Raboisson P., Rognan D. The Practice of Medicinal Chemistry. 4th ed. Academic Press; San Diego, CA, USA: 2015.

Fukunishi Y., Nakamura H. Definition of drug-likeness for compound affinity. J. Chem. Inf. Model. 2011;51:1012–1016. doi: 10.1021/ci200035q. PubMed DOI

Jampilek J. Potential of agricultural fungicides for antifungal drug discovery. Expert Opin. Drug Dis. 2016;11:1–9. doi: 10.1517/17460441.2016.1110142. PubMed DOI

Bickerton G.R., Paolini G.V., Besnard J., Muresan S., Hopkins A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012;4:90–98. doi: 10.1038/nchem.1243. PubMed DOI PMC

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI

Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI

Ou S., Kwok K.C., Wang Y., Bao H. An improved method to determine SH and –S–S– group content in soymilk protein. Food Chem. 2004;88:317–320. doi: 10.1016/j.foodchem.2004.05.001. DOI

Carletti E., Aubrek N., Gillon E., Loiodice M., Nicolet Y., Fontecilla-Camps J.-C., Masson P., Thiermann H., Nachon F., Worek F. Structure–activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. Biochem. J. 2009;421:97–106. doi: 10.1042/BJ20090091. PubMed DOI

Krátký M., Štěpánková Š., Vorčáková K., Vinšová J. Salicylanilide diethyl phosphates as cholinesterases inhibitors. Bioorg. Chem. 2015;58:48–52. doi: 10.1016/j.bioorg.2014.11.005. PubMed DOI

Morris G., Huey R., Lindstrom W., Sanner M., Belew R., Goodsell D., Olson A. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Case D.A., Betz R.M., Cerutti D.S., Cheatham T.E., Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N., et al. AMBER 2016. University of California; San Francisco, CA, USA: 2016.

Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J., Dror R., Shaw D. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC

Wang J., Wolf R., Caldwell J., Kollman P., Case D. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Jorgensen W., Chandrasekhar J., Madura J., Impey R., Klein M. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Izaguirre J., Catarello D., Wozniak J., Skeel R. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001;114:2090–2098. doi: 10.1063/1.1332996. DOI

Ryckaert J.P., Ciccotti G., Berendsen H. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI

Essmann U., Perera L., Berkowitz M., Darden T., Lee H., Pedersen L. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Roe D.R., Cheatham T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision C.01. Gaussian, Inc.; Wallingford, CT, USA: 2016.

Lu T., Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI

Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...