Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA 18-03847S
Grantová Agentura České Republiky
APVV-17-0373 and APVV-18-0302
Agentúra na Podporu Výskumu a Vývoja
PICT 2015-1769
Agencia Nacional de Promoción Científica y Tecnológica
"FIT" CZ.02.1.01/0.0/0.0/15_003/0000495
Ministerstvo Školství, Mládeže a Tělovýchovy
. RO0518
Ministerstvo Zemědělství
PubMed
34502357
PubMed Central
PMC8430704
DOI
10.3390/ijms22179447
PII: ijms22179447
Knihovny.cz E-zdroje
- Klíčová slova
- bioassays, carbamates, cholinesterase inhibitors, molecular modeling, sulfonamides, synthesis,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemie MeSH
- karbamáty chemická syntéza chemie MeSH
- katalytická doména MeSH
- lidé MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- sulfonamidy chemická syntéza chemie MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- BCHE protein, human MeSH Prohlížeč
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- karbamáty MeSH
- sulfonamidy MeSH
A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.
Institute of Chemistry University of Silesia Szkolna 9 40007 Katowice Poland
Institute of Neuroimmunology Slovak Academy of Sciences Dubravska Cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
Eikelboom W.S., Van den Berg E., Coesmans M., Singleton E.H., Papma J.M. Neuropsychiatric and Cognitive Symptoms in Alzheimer’s Disease: A Study in Ad Biomarker Confirmed Patients across the Clinical Spectrum. Alzheimer’s Dement. 2019;15:567–568. doi: 10.1016/j.jalz.2019.06.4512. DOI
Lopez O.L., DeKosky S.T. Clinical symptoms in Alzheimer’s disease. Handb. Clin. Neurol. 2008;89:207–216. doi: 10.1016/S0072-9752(07)01219-5. PubMed DOI
Lyketsos C.G., Carrillo M.C., Ryan J.M., Khachaturian A.S., Trzepacz P., Amatniek J., Cedarbaum J., Brashear R., Milleri D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2011;7:532–539. doi: 10.1016/j.jalz.2011.05.2410. PubMed DOI PMC
Alzheimer’s Association 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’S Assoc. 2020;16:391–460. doi: 10.1002/alz.12068. PubMed DOI
Francis P., Palmer A., Snape M., Wilcock G. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry. 1999;66:137–147. doi: 10.1136/jnnp.66.2.137. PubMed DOI PMC
Hampel H., Mesulam M.M., Cuello A.C., Khachaturian A.S., Vergallo A., Farlow M.R., Snyder P.J., Giacobini E., Khachaturian Z.S. Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research. J. Prev. Alzheimer’s Dis. 2019;6:2–15. doi: 10.1016/j.jalz.2017.08.016. PubMed DOI
Blessed G., Tomlinson B.E., Roth M. The Association between Quantitative Measures of Dementia and of Senile Change in the Cerebral Grey Matter of Elderly Subjects. Br. J. Psychiatry. 1968;114:797–811. doi: 10.1192/bjp.114.512.797. PubMed DOI
Eftekharzadeh B., Daigle J.G., Kapinos L.E., Coyne A., Schiantarelli J., Carlomagno Y., Cook C., Miller S.J., Dujardin S., Tepper M., et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron. 2018;99:925–940. doi: 10.1016/j.neuron.2018.07.039. PubMed DOI PMC
Huang W.J., Zhang X., Chen W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016;4:519–522. doi: 10.3892/br.2016.630. PubMed DOI PMC
Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lambb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. 2018;4:575–590. doi: 10.1016/j.trci.2018.06.014. PubMed DOI PMC
Colovic M.B., Krstic D.Z., Lazarević-Pašti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase Inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s Disease. Prim. Care Companion CNS Disord. 2013;15 doi: 10.4088/PCC.12r01412. PCC.12r01412. PubMed DOI PMC
Darvesh S. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer’s Disease. Curr. Alzheimer Res. 2016;13:1173–1177. doi: 10.2174/1567205013666160404120542. PubMed DOI
Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T.A., Lee B., Ingram D.K., Lahiri D.K. A New Therapeutic Target in Alzheimer’s Disease Treatment: Attention to Butyrylcholinesterase. Curr. Med Res. Opin. 2001;17:159–165. doi: 10.1185/03007990152673800. PubMed DOI
Mushtaq G., Greig N.H., Khan J.A., Kamal M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets. 2014;13:1432–1439. doi: 10.2174/1871527313666141023141545. PubMed DOI PMC
Arendt T., Brückner M.K., Lange M., Bigl V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development—A study of molecular forms. Neurochem. Int. 1992;21:381–396. doi: 10.1016/0197-0186(92)90189-X. PubMed DOI
Mesulam M.M., Guillozet A., Shaw P., Levey A., Duysen E.G., Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. 2002;110:627–639. doi: 10.1016/S0306-4522(01)00613-3. PubMed DOI
Li B., Duysen E.G., Carlson M., Lockridge O. The Butyrylcholinesterase Knockout Mouse as a Model for Human Butyrylcholinesterase Deficiency. J. Pharmacol. Exp. Ther. 2008;324:1146–1154. doi: 10.1124/jpet.107.133330. PubMed DOI
Holmes C., Ballard C., Lehmann D., Smith A.D., Beaumont H., Day I.N., Khan M.N., Lovestone S., McCulley M., Morris C.M., et al. Rate of Progression of Cognitive Decline in Alzheimer’s Disease: Effect of Butyrylcholinesterase K Gene Variation. J. Neurol. Neurosur. Psychiatry. 2005;76:640–643. doi: 10.1136/jnnp.2004.039321. PubMed DOI PMC
Hartmann J., Kiewert C., Duysen E.G., Lockridge O., Greig N.H., Klein J. Excessive Hippocampal Acetylcholine Levels in Acetylcholinesterase-Deficient Mice Are Moderated by Butyrylcholinesterase Activity. J. Neurochem. 2007;100:1421–1429. doi: 10.1111/j.1471-4159.2006.04347.x. PubMed DOI
Greig N.H., Utsuki T., Ingram D.K., Wang Y., Pepeu G., Scali C., Yu Q.S., Mamczarz J., Holloway H.W., Giordano T., et al. Selective Butyrylcholinesterase Inhibition Elevates Brain Acetylcholine, Augments Learning and Lowers Alzheimer B-Amyloid Peptide in Rodent. Proc. Natl. Acad. Sci. USA. 2005;102:17213–17218. doi: 10.1073/pnas.0508575102. PubMed DOI PMC
Furukawa-Hibi Y., Alkam T., Nitta A., Matsuyama A., Mizoguchi H., Suzuki K., Moussaoui S., Yu Q.S., Greig N.H., Nagai T., et al. Butyrylcholinesterase Inhibitors Ameliorate Cognitive Dysfunction Induced by Amyloid-B Peptide in Mice. Behav. Brain Res. 2011;225:222–229. doi: 10.1016/j.bbr.2011.07.035. PubMed DOI PMC
Greig N.H., Yu Q., Brossi A., Soncrant T.T., Hausman M. Highly Selective Butyrylcholinesterase Inhibitors for the Treatment and Diagnosis of Alzheimer’s Disease and Dementias. 20020094999. U.S. Patent. 2002 Jul 18;
Giacobini E. Cholinesterase Inhibitors: New Roles and Therapeutic Alternatives. J. Ital. Pharmacol. Soc. 2004;50:433–440. PubMed
McGleenon B.M., Dynan K.B., Passmore A.P. Acetylcholinesterase Inhibitors in Alzheimer’s Disease. Br. J. Clin. Pharmacol. 1999;48:471–480. doi: 10.1046/j.1365-2125.1999.00026.x. PubMed DOI PMC
Ballard C., Greig N., Guillozet-Bongaarts A., Enz A., Darvesh S. Cholinesterases: Roles in the Brain During Health and Disease. Curr. Alzheimer Res. 2005;2:307–318. doi: 10.2174/1567205054367838. PubMed DOI
Kandiah N., Pai M.C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC
Dighe S.N., Tippana M., van Akker S., Collet T.A. Structure-based scaffold repurposing toward the discovery of novel cholinesterase inhibitors. ACS Omega. 2020;5:30971–30979. doi: 10.1021/acsomega.0c03848. PubMed DOI PMC
Lane R.M., Potkin S.G.A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI
Alcantara V.M., Chautard-Freire-Maia E.A., Scartezini M., Cerci M.S.J., Braun-Prado K., Picheth G. Butyrylcholinesterase Activity and Risk Factors for Coronary Artery Disease. Scand. J. Clin. Lab. Investig. 2002;62:399–404. doi: 10.1080/00365510260296564. PubMed DOI
Stojanov M., Stefanovič A., Džingalaševič G., Mandič-Radič S., Prostran M. Butyrylcholinesterase Activity in Young Men and Women: Association with Cardiovascular Risk Factors. Clin. Biochem. 2011;44:623–626. doi: 10.1016/j.clinbiochem.2011.03.028. PubMed DOI
Iwasaki T., Yoneda M., Nakajima A., Terauchi Y. Serum Butyrylcholinesterase is Strongly Associated with Adiposity, the Serum Lipid Profile and Insulin Resistance. Intern. Med. 2007;46:1633–1639. doi: 10.2169/internalmedicine.46.0049. PubMed DOI
Sato K.K., Hayashi T., Maeda I., Koh H., Harita N., Uehara S., Onishi Y., Oue K., Nakamura Y., Endo G., et al. Serum Butyrylcholinesterase and the Risk of Future Type 2 Diabetes: The Kansai Healthcare Study. Clin. Endocrinol. 2014;80:362–367. doi: 10.1111/cen.12171. PubMed DOI
Li B., Duysen E.G., Lockridge O. The Butyrylcholinesterase Knockout Mouse is Obese on a High-Fat Diet. Chem.-Biol. Interact. 2008;175:88–91. doi: 10.1016/j.cbi.2008.03.009. PubMed DOI
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol. Med. Rep. 2019;20:1479–1487. doi: 10.3892/mmr.2019.10374. PubMed DOI PMC
Brus B., Košak U., Turk S., Pišlar A., Coquelle N., Kos J., Stojan J., Colletier J.P., Gobec S.J. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. Med. Chem. 2014;57:8167–8179. doi: 10.1021/jm501195e. PubMed DOI
Sawatzky E., Wehle S., Kling B., Wendrich J., Bringmann G., Christoph A., Sotriffer C.A., Heilmann J., Decker M. Discovery of highly selective and nanomolar carbamate-based butyrylcholinesterase inhibitors by rational investigation into their inhibition mode. J. Med. Chem. 2016;59:2067–2082. doi: 10.1021/acs.jmedchem.5b01674. PubMed DOI
Kumar A., Pintus F., Di Petrillo A., Medda A.R., Caria P., Matos M.J., Vina D., Pieroni E., Delogu F., Era B., et al. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Sci. Rep. 2018;8:4424. doi: 10.1038/s41598-018-22747-2. PubMed DOI PMC
Wu C., Tu Y., Li Z., Li Y. Highly selective carbamate-based butyrylcholinesterase inhibitors derived from a naturally occurring pyranoisoflavone. Bioorg. Chem. 2019;88:102949. doi: 10.1016/j.bioorg.2019.102949. PubMed DOI
Hoffmann M., Stiller C., Endres E., Scheiner M., Gunesch S., Sotriffer C., Maurice T., Decker M. Highly selective butyrylcholinesterase inhibitors with tunable duration of action by chemical modification of transferable carbamate units exhibit pronounced neuroprotective effect in an Alzheimer’s disease mouse model. J. Med. Chem. 2019;62:9116–9140. doi: 10.1021/acs.jmedchem.9b01012. PubMed DOI
Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC
Kielczewska U., Jorda R., Gonzalez G., Morzycki J.W., Ajani H., Svrckova K., Stepankova S., Wojtkielewicz A. The synthesis and cholinesterase inhibitory activities of solasodine analogues with seven-membered F ring. J. Steroid Biochem. Mol. Biol. 2021;205:105776. doi: 10.1016/j.jsbmb.2020.105776. PubMed DOI
Jann M.W., Shirley K.L., Small G.W. Clinical Pharmacokinetics and Pharmacodynamics of Cholinesterase Inhibitors. Clin. Pharmacokinet. 2002;41:719–739. doi: 10.2165/00003088-200241100-00003. PubMed DOI
Bartolini M., Cavrini V., Andrisano V. Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. J. Chromatogr. A. 2007;1144:102–110. doi: 10.1016/j.chroma.2006.11.029. PubMed DOI
Wilson I.B., Hatch M.A., Ginsburg S. Carbamylation of Acetylcholinesterase. J. Biol. Chem. 1960;235:2312–2315. doi: 10.1016/S0021-9258(18)64619-8. PubMed DOI
Wilson I.B., Harrison M.A., Ginsburg S. Carbamyl derivatives of acetylcholinesterase. J. Biol. Chem. 1961;236:1498–1500. doi: 10.1016/S0021-9258(18)64204-8. PubMed DOI
Xie Q., Zheng Z., Shao B., Fu W., Xia Z., Li W., Sun J., Zheng W., Zhang W., Sheng W., et al. Pharmacophore-based design and discovery of (−)-meptazinol carbamates as dual modulators of cholinesterase and amyloidogenesis. J. Enzym. Inhib. Med. Chem. 2017;32:659–671. doi: 10.1080/14756366.2016.1265521. PubMed DOI PMC
Bar-On P., Millard C.B., Harel M., Dvir H., Enz A., Sussman J.L., Silman I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry. 2002;41:3555–3564. doi: 10.1021/bi020016x. PubMed DOI
Yamali C., Gul H.I., Kazaz C., Levent S., Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg. Chem. 2020;96:103627. doi: 10.1016/j.bioorg.2020.103627. PubMed DOI
Bag S., Tulsan R., Sood A., Cho H., Redjeb W., Zhou H., LeVine B., Török M. Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2015;25:626–630. doi: 10.1016/j.bmcl.2014.12.006. PubMed DOI
Košak U., Brus B., Knez D., Šink R., Žakelj S., Trontelj J., Pišlar A., Šlenc J., Gobec M., Živin M., et al. Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Sci. Rep. 2016;6:39495. doi: 10.1038/srep39495. PubMed DOI PMC
Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC
Imramovsky A., Pejchal V., Stepankova S., Vorcakova K., Jampilek J., Vanco J., Simunek P., Kralovec K., Bruckova L., Mandikova J., et al. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013;21:1735–1748. doi: 10.1016/j.bmc.2013.01.052. PubMed DOI
Bader R.F.W. Atoms in molecules. Acc. Chem. Res. 1985;18:9–15. doi: 10.1021/ar00109a003. DOI
Rodriguez M., Llinares M., Doulut S., Heitz A., Martinez J. A facile synthesis of chiral of chiral N-protected β-amino alcohols. Tet. Lett. 1991;32:923–926. doi: 10.1016/S0040-4039(00)92121-X. DOI
Dubiella C., Cui H., Gersch M., Brouwer A.J., Sieber S.A., Kruger A., Liskamp R.M.J., Groll M. Selective inhibition of the immunoproteasome by ligand-induced crosslinking of the active site. Angew. Chem. Int. Ed. Engl. 2014;53:11969–11973. doi: 10.1002/anie.201406964. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
DrugBank—Rivastigmine. [(accessed on 19 June 2021)]; Available online: https://go.drugbank.com/drugs/DB00989.
Ariel N., Ordentlich A., Barak D., Bino T., Velan B., Shafferman A. The ‘aromatic patch’ of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem. J. 1998;335:95–102. doi: 10.1042/bj3350095. PubMed DOI PMC
Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI
Rojas S., Parravicini O., Vettorazzi M., Tosso R., Garro A., Gutierrez L., Andujar S., Enriz R. Combined MD/QTAIM techniques to evaluate ligand-receptor interactions. Scope and limitations. Eur. J. Med. Chem. 2020;208:112792. doi: 10.1016/j.ejmech.2020.112792. PubMed DOI
Campos L.E., Garibotto F., Angelina E., Kos J., Gonec T., Marvanova P., Vettorazzi M., Oravec M., Jendrzejewska I., Jampilek J., et al. Hydroxynaphthalenecarboxamides and Substituted Piperazinylpropandiols, Two New Series of BRAF Inhibitors. A theoretical and experimental study. Bioorg. Chem. 2020;103:104145. doi: 10.1016/j.bioorg.2020.104145. PubMed DOI
Vettorazzi M., Insuasty D., Lima S., Gutierrez L., Nogueras M., Marchal A., Abonia R., Andujar S., Spiegel S., Cobo J., et al. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors. Bioorg. Chem. 2020;94:103414. doi: 10.1016/j.bioorg.2019.103414. PubMed DOI PMC
Vettorazzi M., Angelina E., Lima S., Gonec T., Otevrel J., Marvanova P., Padrtova T., Mokry P., Bobal P., Acosta L.M., et al. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur. J. Med. Chem. 2017;139:461–481. doi: 10.1016/j.ejmech.2017.08.017. PubMed DOI PMC
Tosso R.D., Andujar S.A., Gutierrez L., Angelina E., Rodriguez R., Nogueras M., Baldoni H., Suvire F.D., Cobo J., Enriz R.D. Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. J. Chem. Inf. Model. 2013;53:2018–2032. doi: 10.1021/ci400178h. PubMed DOI
Padrtova T., Marvanova P., Odehnalova K., Kubinova R., Parravicini O., Garro A., Enriz R., Humpa O., Oravec M., Mokry P. Synthesis, analysis, cholinesterase-inhibiting activity and molecular modelling studies of 3-(dialkylamino)-2-hydroxypropyl 4-[(alkoxy-carbonyl)amino]benzoates and their quaternary ammonium salts. Molecules. 2017;22:2048. doi: 10.3390/molecules22122048. PubMed DOI PMC
Parravicini O., Angelina E., Spinelli R., Garibotto F., Siano A.S., Vila L., Cabedo N., Cortes D., Enriz R.D. Design, synthesis, biological evaluation and molecular modelling of substituted pyrrolo[2,1-a]isoquinolinone derivatives: Discovery of potent inhibitors of AChE and BChE. New J. Chem. 2021 doi: 10.1039/D1NJ00345C. in press. DOI
DrugBank—Galantamine. [(accessed on 19 June 2021)]; Available online: https://go.drugbank.com/drugs/DB00674.
Ortiz J.E., Garro A., Pigni N.B., Agüero M.B., Roitman G., Slanis A., Enriz R.D., Feresin G.E., Bastida J., Tapia A. Cholinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of hieronymiella species. Phytomedicine. 2018;39:66–74. doi: 10.1016/j.phymed.2017.12.020. PubMed DOI
Ortiz J.E., Pigni N.B., Andujar S.A., Roitman G., Suvire F.D., Enriz R.D., Tapia A., Bastida J., Feresin G.E. Alkaloids from hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016;79:1241–1248. doi: 10.1021/acs.jnatprod.5b00785. PubMed DOI
Greenblatt H.M., Kryger G., Lewis T., Silman I., Sussman J.L. Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3 Å resolution. FEBS Lett. 1999;463:321–326. doi: 10.1016/S0014-5793(99)01637-3. PubMed DOI
Carmona-Viglianco F., Zaragoza-Puchol D., Parravicini O., Garro A., Enriz R.D., Feresin G.E., Kurina-Sanz M., Orden A.A. Synthesis, biological evaluation and molecular modeling studies of substituted N-benzyl-2-phenylethanamines as cholinesterase inhibitors. New J. Chem. 2020;44:9466–9476. doi: 10.1039/D0NJ00282H. DOI
Sussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science. 1991;253:872–879. doi: 10.1126/science.1678899. PubMed DOI
Gibney G., Camp S., Dionne M., MacPhee-Quigley K., Taylor P. Mutagenesis of essential functional residues in acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1990;87:7546–7550. doi: 10.1073/pnas.87.19.7546. PubMed DOI PMC
Balasubramanian A.S., Bhanumathy C.D. Noncholinergic functions of cholinesterases. FASEB J. 1993;7:1354–1358. doi: 10.1096/fasebj.7.14.8224608. PubMed DOI
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Van de Waterbeemd H., Gifford E. ADMET in silico modeling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003;2:192–204. doi: 10.1038/nrd1032. PubMed DOI
Kerns E.H., Di L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.
Wermuth C., Aldous D., Raboisson P., Rognan D. The Practice of Medicinal Chemistry. 4th ed. Academic Press; San Diego, CA, USA: 2015.
Fukunishi Y., Nakamura H. Definition of drug-likeness for compound affinity. J. Chem. Inf. Model. 2011;51:1012–1016. doi: 10.1021/ci200035q. PubMed DOI
Jampilek J. Potential of agricultural fungicides for antifungal drug discovery. Expert Opin. Drug Dis. 2016;11:1–9. doi: 10.1517/17460441.2016.1110142. PubMed DOI
Bickerton G.R., Paolini G.V., Besnard J., Muresan S., Hopkins A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012;4:90–98. doi: 10.1038/nchem.1243. PubMed DOI PMC
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI
Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI
Ou S., Kwok K.C., Wang Y., Bao H. An improved method to determine SH and –S–S– group content in soymilk protein. Food Chem. 2004;88:317–320. doi: 10.1016/j.foodchem.2004.05.001. DOI
Carletti E., Aubrek N., Gillon E., Loiodice M., Nicolet Y., Fontecilla-Camps J.-C., Masson P., Thiermann H., Nachon F., Worek F. Structure–activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. Biochem. J. 2009;421:97–106. doi: 10.1042/BJ20090091. PubMed DOI
Krátký M., Štěpánková Š., Vorčáková K., Vinšová J. Salicylanilide diethyl phosphates as cholinesterases inhibitors. Bioorg. Chem. 2015;58:48–52. doi: 10.1016/j.bioorg.2014.11.005. PubMed DOI
Morris G., Huey R., Lindstrom W., Sanner M., Belew R., Goodsell D., Olson A. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Case D.A., Betz R.M., Cerutti D.S., Cheatham T.E., Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N., et al. AMBER 2016. University of California; San Francisco, CA, USA: 2016.
Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J., Dror R., Shaw D. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC
Wang J., Wolf R., Caldwell J., Kollman P., Case D. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Jorgensen W., Chandrasekhar J., Madura J., Impey R., Klein M. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Izaguirre J., Catarello D., Wozniak J., Skeel R. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001;114:2090–2098. doi: 10.1063/1.1332996. DOI
Ryckaert J.P., Ciccotti G., Berendsen H. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Essmann U., Perera L., Berkowitz M., Darden T., Lee H., Pedersen L. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Roe D.R., Cheatham T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision C.01. Gaussian, Inc.; Wallingford, CT, USA: 2016.
Lu T., Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI
Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC