Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
18-07724S
Grantová Agentura České Republiky
PRIMUS/17/SCI/4
Univerzita Karlova v Praze
UNCE/18/SCI/012
Univerzita Karlova v Praze
SVV 260 550
Univerzita Karlova v Praze
EFSA-CDN [CZ.02.1.01/0.0/0.0/16_019/0000841]
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32703268
PubMed Central
PMC7379777
DOI
10.1186/s13567-020-00820-x
PII: 10.1186/s13567-020-00820-x
Knihovny.cz E-resources
- Keywords
- ABC-transporters, P-glycoprotein, UDP-glycosyl transferases, anthelmintics, benzimidazoles, cytochromes P450, drug resistance, nematode,
- MeSH
- Albendazole analogs & derivatives pharmacology MeSH
- Antinematodal Agents pharmacology MeSH
- Haemonchus drug effects enzymology MeSH
- Drug Resistance * MeSH
- Inactivation, Metabolic MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Albendazole MeSH
- albendazole sulfoxide MeSH Browser
- Antinematodal Agents MeSH
The efficacy of anthelmintic therapy of farm animals rapidly decreases due to drug resistance development in helminths. In resistant isolates, the increased expression and activity of drug-metabolizing enzymes (DMEs), e.g. cytochromes P450 (CYPs), UDP-glycosyltransferases (UGTs) and P-glycoprotein transporters (P-gps), in comparison to sensitive isolates have been described. However, the mechanisms and circumstances of DMEs induction are not well known. Therefore, the present study was designed to find the changes in expression of CYPs, UGTs and P-gps in adult parasitic nematodes Haemonchus contortus exposed to sub-lethal doses of the benzimidazole anthelmintic drug albendazole (ABZ) and its active metabolite ABZ-sulfoxide (ABZSO). In addition, the effect of ABZ at sub-lethal doses on the ability to deactivate ABZ during consequent treatment was studied. The results showed that contact of H. contortus adults with sub-lethal doses of ABZ and ABZSO led to a significant induction of several DMEs, particularly cyp-2, cyp-3, cyp-6, cyp-7, cyp-8, UGT10B1, UGT24C1, UGT26A2, UGT365A1, UGT366C1, UGT368B2, UGT367A1, UGT371A1, UGT372A1 and pgp-3, pgp-9.1, pgp-9.2, pgp-10. This induction led to increased formation of ABZ metabolites (especially glycosides) and their increased export from the helminths' body into the medium. The present study demonstrates for the first time that contact of H. contortus with sub-lethal doses of ABZ (e.g. during underdose treatment) improves the ability of H. contortus adults to deactivate ABZ in consequent therapy.
See more in PubMed
Emery DL, Hunt PW, Le Jambre LF. Haemonchus contortus: the then and now, and where to from here? Int J Parasitol. 2016;46:755–769. PubMed
Khan S, Zhao XC, Hou YN, Yuan CX, Li YM, Luo XP, Liu JZ, Feng XG. Analysis of genome-wide SNPs based on 2b-RAD sequencing of pooled samples reveals signature of selection in different populations of Haemonchus contortus. J Biosci. 2019;44:97. PubMed
Teixeira M, Matos A, Albuquerque F, Bassetto CC, Smith WD, Monteiro JP. Strategic vaccination of hair sheep against Haemonchus contortus. Parasitol Res. 2019;118:2383–2388. PubMed
Ruano ZM, Carolino N, Mateus TL. Gastrointestinal parasites as a threat to grazing sheep. Large Anim Rev. 2017;23:231–238.
Lanusse C, Canton C, Virkel G, Alvarez L, Costa L, Lifschitz A. Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol. 2018;34:664–682. PubMed
Matoušková P, Vokřál I, Lamka J, Skálová L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32:481–491. PubMed
Stuchlikova L, Jirasko R, Vokral I, Valat M, Lamka J, Szotakova B, Holcapek M, Skalova L. Metabolic pathways of anthelmintic drug monepantel in sheep and in its parasite (Haemonchus contortus) Drug Test Anal. 2014;6:1055–1062. PubMed
Vokral I, Jirasko R, Stuchlikova L, Bartikova H, Szotakova B, Lamka J, Varady M, Skalova L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Vet Parasitol. 2013;196:373–381. PubMed
Vokral I, Bartikova H, Prchal L, Stuchlikova L, Skalova L, Szotakova B, Lamka J, Varady M, Kubicek V. The metabolism of flubendazole and the activities of selected biotransformation enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Parasitology. 2012;139:1309–1316. PubMed
Stuchlikova LR, Matouskova P, Vokral I, Lamka J, Szotakova B, Seckarova A, Dimunova D, Nguyen LT, Varady M, Skalova L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int J Parasitol Drugs Drug Resist. 2018;8:50–58. PubMed PMC
Laing R, Bartley DJ, Morrison AA, Rezansoff A, Martinelli A, Laing ST, Gilleard JS. The cytochrome P450 family in the parasitic nematode Haemonchus contortus. Int J Parasitol. 2015;45:243–251. PubMed PMC
Matouskova P, Lecova L, Laing R, Dimunova D, Vogel H, Stuchlikova LR, Nguyen LT, Kellerova P, Vokral I, Lamka J, Szotakova B, Varady M, Skalova L. UDP-glycosyltransferase family in Haemonchus contortus: phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences. Int J Parasitol Drugs Drug Resist. 2018;8:420–429. PubMed PMC
Leprohon P, Legare D, Ouellette M. ABC transporters involved in drug resistance in human parasites. Essays Biochem Abc Transp. 2011;50:121–144. PubMed
Mate L, Ballent M, Canton C, Ceballos L, Lifschitz A, Lanusse C, Alvarez L, Liron JP. Assessment of P-glycoprotein gene expression in adult stage of Haemonchus contortus in vivo exposed to ivermectin. Vet Parasitol. 2018;264:1–7. PubMed
Roos MH, Otsen M, Hoekstra R, Veenstra JG, Lenstra JA. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int J Parasitol. 2004;34:109–115. PubMed
Vanwyk JA, Gerber HM, Groeneveld HT. A technique for the recovery of nematodes from ruminants by migration from gastrointestinal ingesta gelled in agar-large scale application. Onderstepoort J Vet Res. 1980;47:147–158. PubMed
Cvilink V, Skalova L, Szotakova B, Lamka J, Kostiainen R, Ketola RA. LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Anal Bioanal Chem. 2008;391:337–343. PubMed
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. PubMed
Lecova L, Ruzickova M, Laing R, Vogel H, Szotakova B, Prchal L, Lamka J, Vokral I, Skalova L, Matouskova P. Reliable reference gene selection for quantitative real time PCR in Haemonchus contortus. Mol Biochem Parasitol. 2015;201:123–127. PubMed
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. PubMed PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. PubMed PMC
Stuchlikova L, Jirasko R, Vokral I, Lamka J, Spulak M, Holcapek M, Szotakova B, Bartikova H, Pour M, Skalova L. Investigation of the metabolism of monepantel in ovine hepatocytes by UHPLC/MS/MS. Anal Bioanal Chem. 2013;405:1705–1712. PubMed
Leathwick DM, Besier RB. The management of anthelmintic resistance in grazing ruminants in Australasia–strategies and experiences. Vet Parasitol. 2014;204:44–54. PubMed
Shalaby HA. Anthelmintics resistance; how to overcome it? Iran J Parasitol. 2013;8:18–32. PubMed PMC
Lawrence KE, Lethwick DM, Rhodes AP, Jackson R, Heuer C, Pomroy WE, West DM, Waghorn TS, Moffat JR. Management of gastrointestinal nematode parasites on sheep farms in New Zealand. N Z Vet J. 2007;55:228–234. PubMed
Aksit D, Yalinkilinc HS, Sekkin S, Boyacioglu M, Cirak VY, Ayaz E, Gokbulut C. Comparative pharmacokinetics and bioavailability of albendazole sulfoxide in sheep and goats, and dose-dependent plasma disposition in goats. BMC Vet Res. 2015;11:124. PubMed PMC
Canga AG, Prieto AMS, Liebana MJD, Martinez NF, Vega MS, Vieitez JJG. The pharmacokinetics and metabolism of ivermectin in domestic animal species. Vet J. 2009;179:25–37. PubMed
Furtado LFV, De Aguiar PHN, Zuccherato LW, Teixeira TTG, Alves WP, Da Silva VJ, Gasser RB, Rabelo EML. Albendazole resistance induced in Ancylostoma ceylanicum is not due to single-nucleotide polymorphisms (SNPs) at codons 167, 198, or 200 of the beta-tubulin gene, indicating another resistance mechanism. Parasitol Res. 2019;118:837–849. PubMed
Lnenickova K, Skalova L, Raisova LS, Szotakova B, Matouskova P. Induction of xenobiotic-metabolizing enzymes in hepatocytes by beta-naphthoflavone: time-dependent changes in activities, protein and mRNA levels. Acta Pharm. 2018;68:75–85. PubMed
Kellerova P, Matouskova P, Lamka J, Vokral I, Szotakova B, Zajickova M, Pasak M, Skalova L. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet Parasitol. 2019;273:24–31. PubMed
Yilmaz E, Ramunke S, Demeler J, Krucken J. Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resistant isolate. Int J Parasitol Drugs Drug Resist. 2017;7:362–369. PubMed PMC
Mazerska Z, Mroz A, Pawlowska M, Augustin E. The role of glucuronidation in drug resistance. Pharmacol Ther. 2016;159:35–55. PubMed
Verma H, Bahia MS, Choudhary S, Singh PK, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev. 2019;51:196–223. PubMed
Chen XW, Tang CY, Ma KS, Xia J, Song DL, Gao XW. Overexpression of UDP-glycosyltransferase potentially involved in insecticide resistance in Aphis gossypii Glover collected from Bt cotton fields in China. Pest Manag Sci. 2020;76:371–377. PubMed
Fontaine P, Choe K. The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist. 2018;8:312–319. PubMed PMC
Stasiuk SJ, Macnevin G, Workentine ML, Gray D, Redman E, Bartley D, Morrison A, Sharma N, Colwell D, Ro DK, Gilleard JS. Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. Int J Parasitol Drugs Drug Resist. 2019;11:13–29. PubMed PMC
Peachey LE, Pinchbeck GL, Matthews JB, Burden FA, Lespine A, Von Samson-Himmelstjerna G, Krucken J, Hodgkinson JE. P-glycoproteins play a role in ivermectin resistance in cyathostomins. Int J Parasitol Drugs Drug Resist. 2017;7:388–398. PubMed PMC
Turnbull F, Jonsson NN, Kenyon F, Skuce PJ, Bisset SA. P-glycoprotein-9 and macrocyclic lactone resistance status in selected strains of the ovine gastrointestinal nematode, Teladorsagia circumcincta. Int J Parasitol Drugs Drug Resist. 2018;8:70–80. PubMed PMC
Godoy P, Che H, Beech RN, Prichard RK. Characterisation of P-glycoprotein-91 in Haemonchus contortus. Parasites Vectors. 2016;9:1. PubMed PMC
David M, Lebrun C, Duguet T, Talmont F, Beech R, Orlowski S, Andre F, Prichard RK, Lespine A. Structural model, functional modulation by ivermectin and tissue localization of Haemonchus contortus P-glycoprotein-13. Int J Parasitol Drugs Drug Resist. 2018;8:145–157. PubMed PMC
Merino G, Alvarez AI, Prieto JG, Kim RB. The anthelminthic agent albendazole does not interact with p-glycoprotein. Drug Metab Dispos. 2002;30:365–369. PubMed
Merino G, Molina AJ, Garcia JL, Pulido MM, Prieto JG, Alvarez AI. Intestinal elimination of albendazole sulfoxide: pharmacokinetic effects of inhibitors. Int J Pharm. 2003;263:123–132. PubMed
Lespine A, Menez C, Bourguinat C, Prichard RK. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance. Int J Parasitol Drugs Drug Resist. 2012;2:58–75. PubMed PMC
Menez C, Alberich M, Kansoh D, Blanchard A, Lespine A. Acquired tolerance to ivermectin and moxidectin after drug selection pressure in the nematode Caenorhabditis elegans. Antimicrob Agents Chemother. 2016;60:4809–4819. PubMed PMC
Raza A, Bagnall NH, Jabbar A, Kopp SR, Kotze AC. Increased expression of ATP binding cassette transporter genes following exposure of Haemonchus contortus larvae to a high concentration of monepantel in vitro. Parasit Vectors. 2016;9:522. PubMed PMC
Raza A, Kopp SR, Bagnall NH, Jabbar A, Kotze AC. Effects of in vitro exposure to ivermectin and levamisole on the expression patterns of ABC transporters in Haemonchus contortus larvae. Int J Parasitol Drugs Drug Resist. 2016;6:103–115. PubMed PMC
Biotransformation of anthelmintics in nematodes in relation to drug resistance
UDP-Glycosyltransferases and Albendazole Metabolism in the Juvenile Stages of Haemonchus contortus