Soybean (Glycine max) Is Able to Absorb, Metabolize and Accumulate Fenbendazole in All Organs Including Beans
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-08452S
Grantová Agentura České Republiky
SVV260550
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund
PubMed
34206260
PubMed Central
PMC8268216
DOI
10.3390/ijms22136647
PII: ijms22136647
Knihovny.cz E-zdroje
- Klíčová slova
- anthelmintics, antioxidant enzymes, benzimidazoles, biotransformation, isoflavonoids, pharmaceuticals,
- MeSH
- biologický transport MeSH
- biotransformace MeSH
- fenbendazol metabolismus farmakokinetika MeSH
- Glycine max metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenbendazol MeSH
Although manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots. FBZ was extensively metabolized in roots of in vitro seedlings, where sixteen metabolites were identified, and less in leaves, where only two metabolites were found. The soybeans in greenhouse absorbed FBZ by roots and translocated it to the leaves, pods, and beans. In roots, leaves, and pods two metabolites were identified. In beans, FBZ and one metabolite was found. FBZ exposure did not affect the plant fitness or yield, but reduced activities of some antioxidant enzymes and isoflavonoids content in the beans. In conclusion, manure or biosolids containing FBZ and its metabolites represent a significant risk of these pharmaceuticals entering food consumed by humans or animal feed. In addition, the presence of these drugs in plants can affect plant metabolism, including the production of isoflavonoids.
Zobrazit více v PubMed
De Oliveira H.C., Joffe L.S., Simon K.S., Castelli R.F., Reis F.C.G., Bryan A.M., Borges B.S., Medeiros L.C.S., Bocca A.L., Del Poeta M., et al. Fenbendazole Controls In Vitro Growth, Virulence Potential, and Animal Infection in the Cryptococcus Model. Antimicrob. Agents Chemother. 2020;64:e00286-20. doi: 10.1128/AAC.00286-20. PubMed DOI PMC
Dogra N., Kumar A., Mukhopadhyay T. Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-30158-6. PubMed DOI PMC
Gonzalez A.E., Codd E.E., Horton J., Garcia H.H., Gilman R.H. Oxfendazole: A promising agent for the treatment and control of helminth infections in humans. Expert Rev. Anti-Infect. Ther. 2019;17:51–56. doi: 10.1080/14787210.2018.1555241. PubMed DOI PMC
Matthews J.B. Anthelmintic resistance in equine nematodes. Int. J. Parasitol. Drugs Drug Resist. 2014;4:310–315. doi: 10.1016/j.ijpddr.2014.10.003. PubMed DOI PMC
Boxall A.B.A., Kolpin D.W., Halling-Sørensen B., Tolls J. Peer Reviewed: Are Veterinary Medicines Causing Environmental Risks? Environ. Sci. Technol. 2003;37:286A–294A. doi: 10.1021/es032519b. PubMed DOI
Goodenough A.E., Webb J.C., Yardley J. Environmentally-realistic concentrations of anthelmintic drugs affect survival and motility in the cosmopolitan earthworm Lumbricus terrestris (Linnaeus, 1758) Appl. Soil Ecol. 2019;137:87–95. doi: 10.1016/j.apsoil.2019.02.001. DOI
Bisognin R.P., Wolff D.B., Carissimi E., Prestes O.D., Zanella R. Occurrence and fate of pharmaceuticals in effluent and sludge from a wastewater treatment plant in Brazil. Environ. Technol. 2021;42:2292–2303. doi: 10.1080/09593330.2019.1701561. PubMed DOI
Kreuzig R., Blümlein K., Höltge S. Fate of the Benzimidazole Antiparasitics Flubendazole and Fenbendazole in Manure and Manured Soils. CLEAN Soil Air Water. 2007;35:488–494. doi: 10.1002/clen.200720023. DOI
Bundschuh M., Hahn T., Ehrlich B., Höltge S., Kreuzig R., Schulz R. Acute Toxicity and Environmental Risks of Five Veterinary Pharmaceuticals for Aquatic Macroinvertebrates. Bull. Environ. Contam. Toxicol. 2015;96:139–143. doi: 10.1007/s00128-015-1656-8. PubMed DOI
Park K., Bang H.W., Park J., Kwak I.-S. Ecotoxicological multilevel-evaluation of the effects of fenbendazole exposure to Chironomus riparius larvae. Chemosphere. 2009;77:359–367. doi: 10.1016/j.chemosphere.2009.07.019. PubMed DOI
Stuchlíková L.R., Skálová L., Szotáková B., Syslová E., Vokřál I., Vaněk T., Podlipná R. Biotransformation of flubendazole and fenbendazole and their effects in the ribwort plantain (Plantago lanceolata) Ecotoxicol. Environ. Saf. 2018;147:681–687. doi: 10.1016/j.ecoenv.2017.09.020. PubMed DOI
Syslová E., Landa P., Stuchlíková L.R., Matoušková P., Skálová L., Szotáková B., Navrátilová M., Vaněk T., Podlipná R. Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome. Chemosphere. 2019;218:662–669. doi: 10.1016/j.chemosphere.2018.11.135. PubMed DOI
Horvat A., Babić S., Pavlović D., Ašperger D., Pelko S., Kaštelan-Macan M., Petrović M., Mance A. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal. Chem. 2012;31:61–84. doi: 10.1016/j.trac.2011.06.023. DOI
Jaeger L.H., Carvalho-Costa F.A. Status of benzimidazole resistance in intestinal nematode populations of livestock in Brazil: A systematic review. BMC Vet. Res. 2017;13:1–10. doi: 10.1186/s12917-017-1282-2. PubMed DOI PMC
Ismail M., William S., A Day T., Botros S., Tao L.F., Bennett J.L., Farghally A., Metwally A. Resistance to praziquantel: Direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am. J. Trop. Med. Hyg. 1999;60:932–935. doi: 10.4269/ajtmh.1999.60.932. PubMed DOI
Geerts S., Gryseels B. Drug Resistance in Human Helminths: Current Situation and Lessons from Livestock. Clin. Microbiol. Rev. 2000;13:207–222. doi: 10.1128/CMR.13.2.207. PubMed DOI PMC
Kellerová P., Stuchlíková L.R., Matoušková P., Štěrbová K., Lamka J., Navrátilová M., Vokřál I., Szotáková B., Skálová L. Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults. Vet. Res. 2020;51:1–17. doi: 10.1186/s13567-020-00820-x. PubMed DOI PMC
Alaswad A.A., Song B., Oehrle N.W., Wiebold W.J., Mawhinney T.P., Krishnan H.B. Development of soybean experimental lines with enhanced protein and sulfur amino acid content. Plant Sci. 2021;308:110912. doi: 10.1016/j.plantsci.2021.110912. PubMed DOI
Bártíková H., Podlipná R., Skálová L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere. 2016;144:2290–2301. doi: 10.1016/j.chemosphere.2015.10.137. PubMed DOI
Stuchlíková L., Jirásko R., Skálová L., Pavlík F., Szotáková B., Holčapek M., Vaněk T., Podlipná R. Metabolic pathways of benzimidazole anthelmintics in harebell (Campanula rotundifolia) Chemosphere. 2016;157:10–17. doi: 10.1016/j.chemosphere.2016.05.015. PubMed DOI
Syslová E., Landa P., Navrátilová M., Stuchlíková L.R., Matoušková P., Skálová L., Szotáková B., Vaněk T., Podlipná R. Ivermectin biotransformation and impact on transcriptome in Arabidopsis thaliana. Chemosphere. 2019;234:528–535. doi: 10.1016/j.chemosphere.2019.06.102. PubMed DOI
Gutierrez-Gonzalez J.J., Guttikonda S.K., Tran L.-S.P., Aldrich D.L., Zhong R., Yu O., Nguyen H.T., Sleper D.A. Differential Expression of Isoflavone Biosynthetic Genes in Soybean During Water Deficits. Plant Cell Physiol. 2010;51:936–948. doi: 10.1093/pcp/pcq065. PubMed DOI
Lozovaya V.V., Lygin A.V., Ulanov A.V., Nelson R.L., Daydé J., Widholm J.M. Effect of Temperature and Soil Moisture Status during Seed Development on Soybean Seed Isoflavone Concentration and Composition. Crop. Sci. 2005;45:1934–1940. doi: 10.2135/cropsci2004.0567. DOI
Riaz L., Mahmood T., Coyne M.S., Khalid A., Rashid A., Hayat M.T., Gulzar A., Amjad M. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere. 2017;177:250–257. doi: 10.1016/j.chemosphere.2017.03.033. PubMed DOI
An G., Murry D.J., Gajurel K., Bach T., Deye G., Stebounova L.V., Codd E.E., Horton J., Gonzalez A.E., Garcia H.H., et al. Pharmacokinetics, Safety, and Tolerability of Oxfendazole in Healthy Volunteers: A Randomized, Placebo-Controlled First-in-Human Single-Dose Escalation Study. Antimicrob. Agents Chemother. 2019;63 doi: 10.1128/AAC.02255-18. PubMed DOI PMC
Bach T., Bae S., D’Cunha R., Winokur P., An G. Development and validation of a simple, fast, and sensitive LC/MS/MS method for the quantification of oxfendazole in human plasma and its application to clinical pharmacokinetic study. J. Pharm. Biomed. Anal. 2019;171:111–117. doi: 10.1016/j.jpba.2019.03.048. PubMed DOI PMC
Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Lee Y.-W., Kim J.-D., Zheng J., Row K.H. Comparisons of isoflavones from Korean and Chinese soybean and processed products. Biochem. Eng. J. 2007;36:49–53. doi: 10.1016/j.bej.2006.06.009. DOI
Liu J., Hu B., Liu W., Qin W., Wu H., Zhang J., Yang C., Deng J., Shu K., Du J., et al. Metabolomic tool to identify soybean [Glycine max (L.) Merrill] germplasms with a high level of shade tolerance at the seedling stage. Sci. Rep. 2017;7:42478. doi: 10.1038/srep42478. PubMed DOI PMC
Szymczak G., Wójciak-Kosior M., Sowa I., Zapała K., Strzemski M., Kocjan R. Evaluation of isoflavone content and antioxidant activity of selected soy taxa. J. Food Compos. Anal. 2017;57:40–48. doi: 10.1016/j.jfca.2016.12.015. DOI
Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Methods in Enzymology. Volume 299. Academic Press; London, UK: 1998. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent; pp. 152–178.
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI