Biotransformation of anthelmintics in nematodes in relation to drug resistance

. 2025 Jan 07 ; 27 () : 100579. [epub] 20250107

Status Publisher Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39827513
Odkazy

PubMed 39827513
PubMed Central PMC11787565
DOI 10.1016/j.ijpddr.2025.100579
PII: S2211-3207(25)00002-8
Knihovny.cz E-zdroje

In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance. The present study summarizes the current knowledge regarding the biotransformation of anthelmintics, specifically drugs used to treat mainly nematodes, a group of parasites that are a significant health concern for humans and animals. The main biotransformation enzymes are introduced and their roles in anthelmintics metabolism in nematodes are discussed with a particular focus on their potential participation in drug resistance. Similarly, the inducibility of biotransformation enzymes with sublethal doses of anthelmintics is presented in view of its potential contribution to drug resistance development. In the conclusion, the main tasks awaiting scientists in this area are outlined.

Zobrazit více v PubMed

Abbas I., Al-Araby M., Elmishmishy B., El-Alfy E.S. Gastrointestinal parasites of cats in Egypt: high prevalence high zoonotic risk. BMC Vet. Res. 2022;18(1):420. doi: 10.1186/s12917-022-03520-0. PubMed DOI PMC

Abo-Dalo B., Ndjonka D., Pinnen F., Liebau E., Lüersen K. A novel member of the GCN5-related N-acetyltransferase superfamily from Caenorhabditis elegans preferentially catalyses the N-acetylation of thialysine S-(2-aminoethyl)-L-cysteine. Biochem. J. 2004;384:129–137. doi: 10.1042/BJ20040789. PubMed DOI PMC

Abongwa M., Martin R.J., Robertson A.P. A brief review on the mode of sction of antinematodal drugs. Acta Vet. 2017;67:137–152. doi: 10.1515/acve-2017-0013. PubMed DOI PMC

Agustina K.K., Wirawan I.M.A., Sudarmaja I.M., Subrata M., Dharmawan N.S. The first report on the prevalence of soil-transmitted helminth infections and associated risk factors among traditional pig farmers in Bali Province, Indonesia. Vet. World. 2022;15(5):1154–1162. doi: 10.14202/vetworld.2022.1154-1162. PubMed DOI PMC

Alaimo J.T., Davis S.J., Song S.S., Burnette C.R., Grotewiel M., Shelton K.L., Pierce-Shimomura J.T., Davies A.G., Bettinger J.C. Ethanol metabolism and osmolarity modify behavioral responses to ethanol in C. elegans. Alcohol Clin. Exp. Res. 2012;36(11):1840–1850. doi: 10.1111/j.1530-0277.2012.01799.x. PubMed DOI PMC

Alvinerie M., Dupuy J., Eeckhoutte C., Sutra J.F., Kerboeuf D. In vitro metabolism of moxidectin in Haemonchus contortus adult stages. Parasitol. Res. 2001;87(9):702–704. doi: 10.1007/s004360100408. PubMed DOI

Anderson R.C. vol. 2. CABI; Wallingford, Oxfordshire, UK: 2000. p. 672. (Nematode Parasites of Vertebrates: Their Development and Transmission).

Antonopoulos A., Doyle S.R., Bartley D.J., Morrison A.A., Kaplan R., Howell S., Neveu C., Busin V., Devaney E., Laing R. Allele specific PCR for a major marker of levamisole resistance in Haemonchus contortus. Int. J. Parasitol. Drugs Drug Resist. 2022;20:17–26. doi: 10.1016/j.ijpddr.2022.08.001. PubMed DOI PMC

Ayyadevara S., Dandapat A., Singh S.P., Siegel E.R., Shmookler Reis R.J., Zimniak L., Zimniak P. Life span and stress resistance of Caenorhabditis elegans are differentially affected by glutathione transferases metabolizing 4-hydroxynon-2-enal. Mech. Ageing Dev. 2007;128(2):196–205. doi: 10.1016/j.mad.2006.11.025. PubMed DOI PMC

Azeez S., Babu R.O., Aykkal R., Narayanan R. Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes. J. Mol. Model. 2012;18(1):151–163. doi: 10.1007/s00894-011-1035-2. PubMed DOI

Bagnall N.H., Ruffell A., Raza A., Elliott T.P., Lamb J., Hunt P.W., Kotze A.C. Mutations in the Hco-mptl-1 gene in a field-derived monepantel-resistant isolate of Haemonchus contortus. Int. J. Parasitol. Drugs Drug Resist. 2017;7(2):236–240. doi: 10.1016/j.ijpddr.2017.05.001. PubMed DOI PMC

Baltrusis P., Charvet C.L., Halvarsson P., Mikko S., Hoglund J. Using droplet digital PCR for the detection of hco-acr-8b levamisole resistance marker in H. contortus. Int. J. Parasitol. Drugs Drug Resist. 2021;18(1):151–163. doi: 10.1007/s00894-011-1035-2. PubMed DOI PMC

Barrere V., Alvarez L., Suarez G., Ceballos L., Moreno L., Lanusse C., Prichard R.K. Relationship between increased albendazole systemic exposure and changes in single nucleotide polymorphisms on the beta-tubulin isotype 1 encoding gene in Haemonchus contortus. Vet. Parasitol. 2012;186(3–4):344–349. doi: 10.1016/j.vetpar.2011.11.068. PubMed DOI

Barrett J. Cytochrome P450 in parasitic protozoa and helminths. Comp. Biochem. Physiol. C. 1998;121(1–3):181–183. doi: 10.1016/s0742-8413(98)10039-7. PubMed DOI

Barski O.A., Tipparaju S.M., Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 2008;40(4):553–624. doi: 10.1080/03602530802431439. PubMed DOI PMC

Bártíková H., Vokřál I., Skálová L., Kubíček V., Firbasová J., Briestenský D., Lamka J., Szotáková B. The activity of drug-metabolizing enzymes and the biotransformation of selected anthelmintics in the model tapeworm Hymenolepis diminuta. Parasitology. 2012;139(6):809–818. doi: 10.1017/S0031182011002265. PubMed DOI

Bass C.C. The sources of hookworm infection and the manner in which infection takes place. Tex. Med. J. 1910;26(4):132–138. PubMed PMC

Bay O.F., Hayes K.S., Schwartz J.M., Grencis R.K., Roberts I.S. A genome-scale metabolic model of parasitic whipworm. Nat. Commun. 2023;14(1):6937. doi: 10.1038/s41467-023-42552-4. PubMed DOI PMC

Beck K.R., Kaserer T., Schuster D., Odermatt A. Virtual screening applications in short-chain dehydrogenase/reductase research. J. Steroid Biochem. Mol. Biol. 2017;171:157–177. doi: 10.1016/j.jsbmb.2017.03.008. PubMed DOI PMC

Beydoun S., Sridhar A., Tuckowski A.M., Wang E.M.Y., Leiser S.F. C22 disrupts embryogenesis and extends C. elegans lifespan. Front. Physiol. 2023;14 doi: 10.3389/fphys.2023.1241554. PubMed DOI PMC

Borloo J., De Graef J., Peelaers I., Nguyen D.L., Mitreva M., Devreese B., Hokke C.H., Vercruysse J., Claerebout E., Geldhof P. In-depth proteomic and glycomic analysis of the adult-stage Cooperia oncophora excretome/secretome. J. Proteome Res. 2013;12(9):3900–3911. doi: 10.1021/pr400114y. PubMed DOI PMC

Boussinesq M., Bain O., Chabaud A.G., Gardon-Wendel N., Kamgno J., Chippaux J.P. A new zoonosis of the cerebrospinal fluid of man probably caused by Meningonema peruzzii, a filaria of the central nervous system of Cercopithecidae. Parasite. 1995;2(2):173–176. doi: 10.1051/parasite/1995022173. PubMed DOI

Bray J.E., Marsden B.D., Oppermann U. The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary. Chem. Biol. Interact. 2009;178(1–3):99–109. doi: 10.1016/j.cbi.2008.10.058. PubMed DOI

Brophy P.M., Barrett J. Strategies for detoxification of aldehydic products of lipid peroxidation in helminths. Mol. Biochem. Parasitol. 1990;42(2):205–211. doi: 10.1016/0166-6851(90)90163-g. PubMed DOI

Brophy P.M., MacKintosh N., Morphew R.M. Anthelmintic metabolism in parasitic helminths: proteomic insights. Parasitology. 2012;139(9):1205–1217. doi: 10.1017/S003118201200087X. PubMed DOI

Burton N.O., Dwivedi V.K., Burkhart K.B., Kaplan R.E.W., Baugh L.R., Horvitz H.R. Neurohormonal signaling via a sulfotransferase antagonizes insulin-like signaling to regulate a Caenorhabditis elegans stress response. Nat. Commun. 2018;9(1):5152. doi: 10.1038/s41467-018-07640-w. PubMed DOI PMC

Cai E.J., Wu R.Z., Wu Y.H., Gao Y., Zhu Y.P., Li J. A systematic review and meta-analysis on the current status of anthelmintic resistance in equine nematodes: a global perspective. Mol. Biochem. Parasitol. 2024;257 doi: 10.1016/j.molbiopara.2023.111600. PubMed DOI

Cai W., Cheng C., Feng Q., Ma Y., Hua E., Jiang S., Hou Z., Liu D., Yang A., Cheng D., Xu J., Tao J. Prevalence and risk factors associated with gastrointestinal parasites in goats (Capra hircus) and sheep (Ovis aries) from three provinces of China. Front. Microbiol. 2023;14 doi: 10.3389/fmicb.2023.1287835. PubMed DOI PMC

Campbell W.C., Fisher M.H., Stapley E.O., Albers-Schonberg G., Jacob T.A. Ivermectin: a potent new antiparasitic agent. Science. 1983;221(4613):823–828. doi: 10.1126/science.6308762. PubMed DOI

Cao J.X., Hao X., Li Y., Tan R.A., Cui Z.X., Li L., Zhang Y., Cao J.Y., Min M.R., Liang L.W., Xu Z., Ma W., Ma L. Exploring the role of detoxification genes in the resistance of Bursaphelenchus xylophilus to different exogenous nematicidal substances using transcriptomic analyses. Pestic. Biochem. Physiol. 2023;194 doi: 10.1016/j.pestbp.2023.105527. PubMed DOI

CDC About soil-transmitted helminths. 2024. https://www.cdc.gov/sth/about/index.html

Chirgwin S.R., Coleman S.U., Porthouse K.H., Klei T.R. Tissue migration capability of larval and adult Brugia pahangi. J. Parasitol. 2006;92(1):46–51. doi: 10.1645/GE-599R.1. PubMed DOI

Chung J.G. Purification and characterization of an arylamine N-acetyltransferase in the nematode Enterobius vermicularis. Microbios. 1999;98(389):15–25. PubMed

Chung J.G., Kuo H.M., Lin T.H., Ho C.C., Lee J.H., Lai J.M., Levy G.N., Weber W.W. Evidence for arylamine N-acetyltransferase in the nematode Anisakis simplex. Cancer Lett. 1996;106(1):1–8. doi: 10.1016/0304-3835(96)04288-7. PubMed DOI

Clapham P.A. On the larval migration of Syngamus trachea and its causal relationship to pneumonia in young birds. J. Helminthol. 2009;17(3):159–162. doi: 10.1017/S0022149X00031199. DOI

Coles G.C., Bauer C., Borgsteede F.H., Geerts S., Klei T.R., Taylor M.A., Waller P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992;44(1–2):35–44. doi: 10.1016/0304-4017(92)90141-u. PubMed DOI

Cook G.C. Use of benzimidazole chemotherapy in human helminthiases: indications and efficacy. Parasitol. Today. 1990;6(4):133–136. doi: 10.1016/0169-4758(90)90232-s. PubMed DOI

Craig H., Wastling J.M., Knox D.P. A preliminary proteomic survey of the in vitro excretory/secretory products of fourth-stage larval and adult Teladorsagia circumcincta. Parasitology. 2006;132(Pt 4):535–543. doi: 10.1017/S0031182005009510. PubMed DOI

Cvilink V., Kubíček V., Nobilis M., Křížová V., Szotáková B., Lamka J., Várady M., Kuběnová M., Novotná R., Gavelová M., Skálová L. Biotransformation of flubendazole and selected model xenobiotics in Haemonchus contortus. Vet. Parasitol. 2008;(2–4):242–248. doi: 10.1016/j.vetpar.2007.10.010. PubMed DOI

Cvilink V., Lamka J., Skálová L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metab. Rev. 2009;41(1):8–26. doi: 10.1080/03602530802602880. PubMed DOI

Cvilink V., Skálová L., Szotáková B., Lamka J., Kostiainen R., Ketola R.A. LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Anal. Bioanal. Chem. 2008;391(1):337–343. doi: 10.1007/s00216-008-1863-9. PubMed DOI

Cvilink V., Szotáková B., Vokřál I., Bártíková H., Lamka J., Skálová L. Liquid chromatography/mass spectrometric identification of benzimidazole anthelminthics metabolites formed ex vivo by Dicrocoelium dendriticum. Rapid Commun. Mass Spectrom. 2009;23(17):2679–2684. doi: 10.1002/rcm.4170. PubMed DOI

Dasgupta M., Shashikanth M., Gupta A., Sandhu A., De A., Javed S., Singh V. NHR-49 transcription factor regulates immunometabolic response and survival of Caenorhabditis elegans during Enterococcus faecalis infection. Infect. Immun. 2020;88(8) doi: 10.1128/IAI.00130-20. 20. PubMed DOI PMC

Dent J.A., Smith M.M., Vassilatis D.K., Avery L. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 2000;97(6):2674–2679. doi: 10.1073/pnas.97.6.2674. PubMed DOI PMC

Dicker A.J., Nath M., Yaga R., Nisbet A.J., Lainson F.A., Gilleard J.S., Skuce P.J. Teladorsagia circumcincta: the transcriptomic response of a multi-drug-resistant isolate to ivermectin exposure in vitro. Exp. Parasitol. 2011;127(2):351–356. doi: 10.1016/j.exppara.2010.08.019. PubMed DOI

Diemert D.J., Freire J., Valente V., Fraga C.G., Talles F., Grahek S., Campbell D., Jariwala A., Periago M.V., Enk M., Gazzinelli M.F., Bottazzi M.E., Hamilton R., Brelsford J., Yakovleva A., Li G., Peng J., Correa-Oliveira R., Hotez P., Bethony J. Safety and immunogenicity of the Na-GST-1 hookworm vaccine in Brazilian and American adults. PLoS Neglected Trop. Dis. 2017;11(5) doi: 10.1371/journal.pntd.0005574. PubMed DOI PMC

Dimunová D., Matoušková P., Podlipná R., Boušová I., Skálová L. The role of UDP-glycosyltransferases in xenobioticresistance. Drug Metab. Rev. 2022;54(3):282–298. doi: 10.1080/03602532.2022.2083632. PubMed DOI

Dimunová D., Navrátilová M., Kellerová P., Ambrož M., Skálová L., Matoušková P. The induction and inhibition of UDP-glycosyltransferases in Haemonchus contortus and their role in the metabolism of albendazole. Int. J. Parasitol. Drugs Drug Resist. 2022;19:56–64. doi: 10.1016/j.ijpddr.2022.06.001. PubMed DOI PMC

Douch P.G.C., Gahagan H.M. Localization and some properties of N-deacetylase of Ascaris lumbricoides var suum. Xenobiotica. 1977;7(5):309–314. doi: 10.3109/00498257709035788. PubMed DOI

Doyle S.R., Laing R., Bartley D., Morrison A., Holroyd N., Maitland K., Antonopoulos A., Chaudhry U., Flis I., Howell S., McIntyre J., Gilleard J.S., Tait A., Mable B., Kaplan R., Sargison N., Britton C., Berriman M., Devaney E., Cotton J.A. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep. 2022;41(3) doi: 10.1016/j.celrep.2022.111522. PubMed DOI PMC

Du Z.D., Tong D.N., Chen X.Q., Wu F., Jiang S.J., Zhang J.J., Yang Y., Wang R., Gantuya S., Davaajargal T., Lkhagvatseren S., Batsukh Z., Du A.F., Ma G.X. Genome-wide RNA interference of the nhr gene family in barber 's pole worm identified members crucial for larval viability in vitro. Infect. Genet. Evol. 2024;122 doi: 10.1016/j.meegid.2024.105609. PubMed DOI

Dube F., Hinas A., Roy S., Martin F., Åbrink M., Svärd S., Tydén E. Ivermectin-induced gene expression changes in adult Parascaris univalens and Caenorhabditis elegans: a comparative approach to study anthelminthic metabolism and resistance in vitro. Parasites Vectors. 2022;15(1):158. doi: 10.1186/s13071-022-05260-4. PubMed DOI PMC

Dubinský P., Havasiová-Reiterová K., Peťko B., Hovorka I., Tomašovičová O. Role of small mammals in the epidemiology of toxocariasis. Parasitology. 1995;110(Pt 2):187–193. doi: 10.1017/s0031182000063952. PubMed DOI

Dunn D.R., White E.G. Lungworms (Metastrongylus spp.) in pigs, and their development in the Guinea pig. Nature. 1954;174(4443):1193–1194. doi: 10.1038/1741193a0. PubMed DOI

Durán N., Esposito E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl. Catal. B Environ. 2000;28(2):83–99. doi: 10.1016/S0926-3373(00)00168-5. DOI

Eom H.J., Ahn J.M., Kim Y., Choi J. Hypoxia inducible factor-1 (HIF-1)-flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans. Toxicol. Appl. Pharmacol. 2013;270(2):106–113. doi: 10.1016/j.taap.2013.03.028. PubMed DOI

Epe C., Kaminsky R. New advancement in anthelmintic drugs in veterinary medicine. Trends Parasitol. 2013;29(3):129–134. doi: 10.1016/j.pt.2013.01.001. PubMed DOI

Fairweather I., Brennan G.P., Hanna R.E.B., Robinson M.W., Skuce P.J. Drug resistance in liver flukes. Int. J. Parasitol. Drugs Drug Resist. 2020;12:39–59. doi: 10.1016/j.ijpddr.2019.11.003. PubMed DOI PMC

Fedchenko A.P. Concerning the structure and reproduction of the Guinea worm (Filaria medinensis L.) Am. J. Trop. Med. Hyg.n. 1971;20(4):511–523. doi: 10.4269/ajtmh.1971.20.511. PubMed DOI

Ferguson A.A., Inclan-Rico J.M., Lu D., Bobardt S.D., Hung L., Gouil Q., Baker L., Ritchie M.E., Jex A.R., Schwarz E.M., Rossi H.L., Nair M.G., Dillman A.R., Herbert D.R. Hookworms dynamically respond to loss of Type 2 immune pressure. PLoS Pathog. 2023;19(12) doi: 10.1371/journal.ppat.1011797. PubMed DOI PMC

Fernando M.A., Stockdale P.H.G., Remmler O. The route of migration, development, and pathogenesis of Syngamus trachea (Montagu, 1811) Chapin, 1925, in pheasants. J. Parasitol. 1971;57(1):107–116. PubMed

Fielding J.W. Further observations on the life history of the eye worm of poultry. Aust. J. Exp. Biol. Med. Sci. 1927;4(4):273–281. doi: 10.1038/icb.1927.24. DOI

Firmanty P., Doligalska M., Krol M., Taciak B. Deciphering the dual role of Heligmosomoides polygyrus antigens in macrophage modulation and breast cancer cell growth. Vet. Sci. 2024;11(2):69. doi: 10.3390/vetsci11020069. PubMed DOI PMC

Fissiha W., Kinde M.Z. Anthelmintic resistance and its mechanism: a review. Infect. Drug Resist. 2021;14:5403–5410. doi: 10.2147/IDR.S332378. PubMed DOI PMC

Frothingham C. A contribution to the knowledge of the lesions caused by Trichina spiralis in man. J. Media Res. 1906;15(3):483–490.1. PubMed PMC

Fru M.F., Puoti A. Acquired resistance to monepantel in C. elegans: what about parasitic nematodes? Worm. 2014;3(3) doi: 10.4161/21624046.2014.959416. PubMed DOI PMC

Gharabli H., Della Gala V., Welner D.H. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol. Adv. 2023;67 doi: 10.1016/j.biotechadv.2023.108182. PubMed DOI

Ghorbani P., Kim S.Y., Smith T.K.T., Minarrieta L., Robert-Gostlin V., Kilgour M.K., Ilijevska M., Alecu I., Snider S.A., Margison K.D., Nunes J.R.C., Woo D., Pember C., O'Dwyer C., Ouellette J., Kotchetkov P., St-Pierre J., Bennett S.A.L., Lacoste B., Blais A., Nair M.G., Fullerton M.D. Choline metabolism underpins macrophage IL-4 polarization and RELMalpha up-regulation in helminth infection. PLoS Pathog. 2023;19(9) doi: 10.1371/journal.ppat.1011658. PubMed DOI PMC

Gilleard J.S. Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance. Parasitology. 2013;140(12):1506–1522. doi: 10.1017/S0031182013001145. PubMed DOI

Gilleard J.S., Redman E. Genetic diversity and population structure of Haemonchus contortus. Adv. Parasitol. 2016;93:31–68. doi: 10.1016/bs.apar.2016.02.009. PubMed DOI

Godoy P., Lian J., Beech R.N., Prichard R.K. Haemonchus contortus P-glycoprotein-2: In situ localisation and characterisation of macrocyclic lactone transport. Int. J. Parasitol. 2015;45(1):85–93. doi: 10.1016/j.ijpara.2014.09.008. PubMed DOI

Guerrero J. Closantel - a review of its antiparasitic activity. Prev. Vet. Med. 1984;2:317–327. doi: 10.1016/0167-5877(84)90075-8. DOI

Haenlein G.F.W., Park Y.W. Fighting the deadly helminthiasis without drug resistance. Dairy. 2020;1 doi: 10.3390/dairy1030012. DOI

Hahnel S.R., Dilks C.M., Heisler I., Andersen E.C., Kulke D. Caenorhabditis elegans in anthelmintic research - old model, new perspectives. Int. J. Parasitol. Drugs Drug Resist. 2020;14:237–248. doi: 10.1016/j.ijpddr.2020.09.005. PubMed DOI PMC

Handeland K., Gibbons L.M., Skorping A. Experimental Elaphostrongylus cervi infection in sheep and goats. J. Comp. Pathol. 2000;123(4):248–257. doi: 10.1053/jcpa.2000.0414. PubMed DOI

Hansen T.V., Fryganas C., Acevedo N., Caraballo L., Thamsborg S.M., Mueller-Harvey I., Williams A.R. Proanthocyanidins inhibit Ascaris suum glutathione-S-transferase activity and increase susceptibility of larvae to levamisole in vitro. Parasitol. Int. 2016;65(4):336–339. doi: 10.1016/j.parint.2016.04.001. PubMed DOI

Harder A. The biochemistry of Haemonchus contortus and other parasitic nematodes. Adv. Parasitol. 2016;93:69–94. doi: 10.1016/bs.apar.2016.02.010. PubMed DOI

Hartman J.H., Widmayer S.J., Bergemann C.M., King D.E., Morton K.S., Romersi R.F., Jameson L.E., Leung M.C.K., Andersen E.C., Taubert S., Meyer J.N. Xenobiotic metabolism and transport in Caenorhabditis elegans. J. Toxicol. Environ. Health B Crit. Rev. 2021;24(2):51–94. doi: 10.1080/10937404.2021.1884921. PubMed DOI PMC

Hattori K., Inoue M., Inoue T., Arai H., Tamura H.O. A novel sulfotransferase abundantly expressed in the dauer larvae of Caenorhabditis elegans. J. Biochem. 2006;139(3):355–362. doi: 10.1093/jb/mvj041. PubMed DOI

Hirani N., Westenberg M., Seed P.T., Petalcorin M.I.R., Dolphin C.T. C. elegans flavin-containing monooxygenase-4 is essential for osmoregulation in hypotonic stress. Biol. Open. 2016;5(5):537–549. doi: 10.1242/bio.017400. PubMed DOI PMC

Höppli R. Die durch Ascarislarven bei experimenteller Infektion im Tierkörper bewirkten anatomischen Veränderungen. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 1923;244:159–182. doi: 10.1007/BF01942250. DOI

Howe K.L., Bolt B.J., Shafie M., Kersey P., Berriman M. WormBase ParaSite − a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 2017;215:2–10. doi: 10.1016/j.molbiopara.2016.11.005. PubMed DOI PMC

Hu Y., Xiao S.H., Aroian R.V. The new anthelmintic tribendimidine is an L-type (levamisole and pyrantel) nicotinic acetylcholine receptor agonist. PLoS Neglected Trop. Dis. 2009;3(8):e499. doi: 10.1371/journal.pntd.0000499. PubMed DOI PMC

Huff D.S., Neafie R.C., Binder M.J., De Leon G.A., Brown L.W., Kazacos K.R. Case 4. The first fatal Baylisascaris infection in humans: an infant with eosinophilic meningoencephalitis. Pediatr. Pathol. 1984;2(3):345–352. doi: 10.3109/15513818409022268. PubMed DOI

Igreja C., Sommer R.J. The role of sulfation in nematode development and phenotypic plasticity. Front. Mol. Biosci. 2022;9 doi: 10.3389/fmolb.2022.838148. PubMed DOI PMC

Irvine W.C., Irvine A.R., Jr. Nematode endophthalmitis: Toxocara canis: report of one case. Am. J. Ophthalmol. 1959;47(5 Pt 2):185–191. doi: 10.1016/s0002-9394(14)78242-x. PubMed DOI

Jez J.M., Penning T.M. The aldo-keto reductase (AKR) superfamily: an update. Chem. Biol. Interact. 2001;130–132(1–3):499–525. doi: 10.1016/s0009-2797(00)00295-7. PubMed DOI

Jin X., Yang Y., Liu X., Shi H., Cai X., Luo X., Liu M., Bai X. Glutathione-S-transferase of Trichinella spiralis regulates maturation and function of dendritic cells. Parasitology. 2019;146(14):1725–1732. doi: 10.1017/S003118201900115X. PubMed DOI

Jin Y., Penning T.M. Aldo-keto reductases and bioactivation/detoxication. Annu. Rev. Pharmacol. Toxicol. 2007;47:263–292. doi: 10.1146/annurev.pharmtox.47.120505.105337. PubMed DOI

Joachim A., Lautscham E., Christoffers J., Ruttkowski B. Oesophagostomum dentatum: effect of glutathione S-transferase (GST) inhibitors on GST activity and larval development. Exp. Parasitol. 2011;127(4):762–767. doi: 10.1016/j.exppara.2011.01.005. PubMed DOI

Joachim A., Ruttkowski B. Prostaglandin D(2) synthesis in Oesophagostomum dentatum is mediated by cytosolic glutathione S-transferase. Exp. Parasitol. 2011;127(2):604–606. doi: 10.1016/j.exppara.2010.10.020. PubMed DOI

Jori F., Hernandez-Jover M., Magouras I., Durr S., Brookes V.J. Wildlife-livestock interactions in animal production systems: what are the biosecurity and health implications? Anim. Front. 2021;11(5):8–19. doi: 10.1093/af/vfab045. PubMed DOI PMC

Jörnvall H., Höög J.O., Persson B. SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett. 1999;445(2–3):261–264. doi: 10.1016/s0014-5793(99)00130-1. PubMed DOI

Jörnvall H., Höög J.O., Persson B., Parés X. Pharmacogenetics of the alcohol dehydrogenase system. Pharmacology. 2000;61(3):184–191. doi: 10.1159/000028399. PubMed DOI

Kalani K., Kushwaha V., Sharma P., Verma R., Srivastava M., Khan F., Murthy P.K., Srivastava S.K. In vitro, in silico and in vivo studies of ursolic acid as an anti-filarial agent. PLoS One. 2014;9(11) doi: 10.1371/journal.pone.0111244. PubMed DOI PMC

Kamath R.S., Fraser A.G., Dong Y., Poulin G., Durbin R., Gotta M., Kanapin A., Le Bot N., Moreno S., Sohrmann M., Welchman D.P., Zipperlen P., Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003;421(6920):231–237. doi: 10.1038/nature01278. PubMed DOI

Kampkötter A., Volkmann T.E., de Castro S.H., Leiers B., Klotz L.O., Johnson T.E., Link C.D., Henkle-Duhrsen K. Functional analysis of the glutathione S-transferase 3 from Onchocerca volvulus (Ov-GST-3): a parasite GST confers increased resistance to oxidative stress in Caenorhabditis elegans. J. Mol. Biol. 2003;325(1):25–37. doi: 10.1016/s0022-2836(02)01174-9. PubMed DOI

Kaplan R.M. Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol. 2004;20(10):477–481. doi: 10.1016/j.pt.2004.08.001. PubMed DOI

Kaur M., Singh B.B., Sharma R., Gill J.P.S. Prevalence of gastrointestinal parasites in pigs in Punjab, India. J. Parasit. Dis. 2017;41(2):483–486. doi: 10.1007/s12639-016-0833-y. PubMed DOI PMC

Kawalek J.C., Rew R.S., Heavner J. Glutathione-S-transferase, a possible drug-metabolizing enzyme, in Haemonchus contortus: comparative activity of a cambendazole-resistant and a susceptible strain. Int. J. Parasitol. 1984;14(2):173–175. doi: 10.1016/0020-7519(84)90045-6. PubMed DOI

Keiser J. Present drugs and future perspectives in treating soil-transmitted helminthiasis. Front. Trop. Dis. 2023;4 doi: 10.3389/fitd.2023.1282725. DOI

Keller J., Ellieva A., Ma D.K., Ju J.J., Nehk E., Konkel A., Falck J.R., Schunck W.H., Menzel R. CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochem. J. 2014;464(1):61–71. doi: 10.1042/BJ20140848. PubMed DOI

Kellerová P., Matoušková P., Lamka J., Vokřál I., Szotáková B., Zajíčková M., Pasák M., Skálová L. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet. Parasitol. 2019;273:24–31. doi: 10.1016/j.vetpar.2019.07.006. PubMed DOI

Kellerová P., Navrátilová M., Nguyen L.T., Dimunová D., Raisová Stuchlíková L., Štěrbová K., Skálová L., Matoušková P. UDP-Glycosyltransferases and albendazole metabolism in the juvenile stages of Haemonchus contortus. Front. Physiol. 2020;11 doi: 10.3389/fphys.2020.594116. PubMed DOI PMC

Kellerová P., Raisová Stuchlíková L., Matoušková P., Štěrbová K., Lamka J., Navrátilová M., Vokřál I., Szotáková B., Skálová L. Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults. Vet. Res. 2020;51:94. doi: 10.1186/s13567-020-00820-x. PubMed DOI PMC

Kerboeuf D., Aycardi J. Unexpected increased thiabendazole tolerance in Haemonchus contortus resistant to anthelmintics by modulation of glutathione activity. Parasitol. Res. 1999;85(8–9):713–718. doi: 10.1007/s004360050620. PubMed DOI

Kisan B., Rajini P.S., Shivaya S., Joshi A.K., Shruthi N.K. Kinetic studies on carboxylesterase of model nematode Caenorhabditis elegans exposed in vitro to dichlorvos. Appl. Biol. Res. 2015;17(3):273–279. doi: 10.5958/0974-4517.2015.00039.7. DOI

Kisiela M., Faust A., Ebert B., Maser E., Scheidig A.J. Crystal structure and catalytic characterization of the dehydrogenase/reductase SDR family member 4 (DHRS4) from Caenorhabditis elegans. FEBS. 2018;285(2):275–293. doi: 10.1111/febs.14337. PubMed DOI

Kohler P., Bachmann R. Intestinal tubulin as possible target for the chemotherapeutic action of mebendazole in parasitic nematodes. Mol. Biochem. Parasitol. 1981;4(5–6):325–336. doi: 10.1016/0166-6851(81)90064-5. PubMed DOI

Kosel M., Wild W., Bell A., Rothe M., Lindschau C., Steinberg C.E.W., Schunck W.H., Menzel R. Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans. Biochem. J. 2011;435(3):689–700. doi: 10.1042/BJ20101942. PubMed DOI

Kotze A.C. Cytochrome P450 monooxygenase activity in Haemonchus contortus (Nematoda) Int. J. Parasitol. 1997;27(1):33–40. doi: 10.1016/s0020-7519(96)00161-0. PubMed DOI

Kotze A.C. Peroxide-supported in-vitro cytochrome P450 activities in Haemonchus contortus. Int. J. Parasitol. 1999;29(3):389–396. doi: 10.1016/s0020-7519(98)00224-0. PubMed DOI

Kotze A.C., Cowling K., Bagnall N.H., Hines B.M., Ruffell A.P., Hunt P.W., Coleman G.T. Relative level of thiabendazole resistance associated with the E198A and F200Y SNPs in larvae of a multi-drug resistant isolate of Haemonchus contortus. Int. J. Parasitol. Drugs Drug Resist. 2012;2:92–97. doi: 10.1016/j.ijpddr.2012.02.003. PubMed DOI PMC

Kotze A.C., Dobson R.J., Chandler D. Synergism of rotenone by piperonyl butoxide in Haemonchus contortus and Trichostrongylus colubriformis in vitro: potential for drug-synergism through inhibition of nematode oxidative detoxification pathways. Vet. Parasitol. 2006;136(3–4):275–282. doi: 10.1016/j.vetpar.2005.11.001. PubMed DOI

Kotze A.C., Hunt P.W., Skuce P., von Samson-Himmelstjerna G., Martin R.J., Sager H., Kruecken J., Hodgkinson J., Lespine A., Jex A.R., Gilleard J.S., Beech R.N., Wolstenholme A.J., Demeler J., Robertson A.P., Charvet C.L., Neveu C., Kaminsky R., Rufener L., Alberich M., Menez C., Prichard R.K. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int. J. Parasitol. Drugs. Drug Resist. 2014;4(3):164–184. doi: 10.1016/j.ijpddr.2014.07.007. PubMed DOI PMC

Kotze A.C., Prichard R.K. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Adv. Parasitol. 2016;93:397–428. doi: 10.1016/bs.apar.2016.02.012. PubMed DOI

Kriger F., Burke D., Samoiloff M.R. Induction of the alcohol-metabolizing pathway in the nematode Panagrellus redivivus: phenotypic effects. Biochem. Genet. 1977;15(11–12):1181–1191. doi: 10.1007/BF00484508. PubMed DOI

Kulas J., Schmidt C., Rothe M., Schunck W.H., Menzel R. Cytochrome P450-dependent metabolism of eicosapentaenoic acid in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys. 2008;472(1):65–75. doi: 10.1016/j.abb.2008.02.002. PubMed DOI

Kumar A., Arora P.K. Biotechnological applications of manganese peroxidases for sustainable management. Front. Environ. Sci. 2022;10 doi: 10.3389/fenvs.2022.875157. DOI

Lacey E. Mode of action of benzimidazoles. Parasitol. Today. 1990;6(4):112–115. doi: 10.1016/0169-4758(90)90227-u. PubMed DOI

Laing R., Bartley D.J., Morrison A.A., Rezansoff A., Martinelli A., Laing S.T., Gilleard J.S. The cytochrome P450 family in the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2015;44(4):243–251. doi: 10.1016/j.ijpara.2014.12.001. PubMed DOI PMC

Laing S.T., Ivens A., Laing R., Ravikumar S., Butler V., Woods D.J., Gilleard J.S. Characterization of the xenobiotic response of Caenorhabditis elegans to the anthelmintic drug albendazole and the identification of novel drug glucoside metabolites. Biochem. J. 2010;432(3):505–514. doi: 10.1042/BJ20101346. PubMed DOI

Larigot L., Mansuy D., Borowski I., Coumoul X., Dairou J. Cytochromes P450 of Caenorhabditis elegans: implication in biological functions and metabolism of xenobiotics. Biomolecules. 2022;12(3):342. doi: 10.3390/biom12030342. PubMed DOI PMC

Leiers B., Kampkötter A., Grevelding C.G., Link C.D., Johnson T.E., Henkle-Duhrsen K. A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic. Biol. Med. 2003;34(11):1405–1415. doi: 10.1016/s0891-5849(03)00102-3. PubMed DOI

Leipert R.T. Reports to the Colonial office. Report of the helminthologist for the half-year ending 30th April, 1913. Rep. LSHTM. 1913;IV:86–87.

Leiser S.F., Miller H., Rossner R., Fletcher M., Leonard A., Primitivo M., Rintala N., Ramos F.J., Miller D.L., Kaeberlein M. Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span. Science. 2015;350(6266):1375–1378. doi: 10.1126/science.aac9257. PubMed DOI PMC

Lespine A., Blancfuney C., Prichard R., Alberich M. P-glycoproteins in anthelmintic safety, efficacy, and resistance. Trends Parasitol. 2024;40(10):896–913. doi: 10.1016/j.pt.2024.07.008. PubMed DOI

Lethe M.C.L., Bui D., Hu M., Wang X.Q., Singh R., Chan C.T.Y. Discovering new substrates of a UDP-glycosyltransferase with a high-throughput method. Int. J. Mol. Sci. 2024;25(5):2725. doi: 10.3390/ijms25052725. PubMed DOI PMC

Liebau E., Eckelt V.H., Wildenburg G., Teesdale-Spittle P., Brophy P.M., Walter R.D., Henkle-Duhrsen K. Structural and functional analysis of a glutathione S-transferase from Ascaris suum. Biochem. J. 1997;324(Pt 2):659–666. doi: 10.1042/bj3240659. PubMed DOI PMC

Liebau E., Wildenburg G., Brophy P.M., Walter R.D., Henkle-Duhrsen K. Biochemical analysis, gene structure and localization of the 24 kDa glutathione S-transferase from Onchocerca volvulus. Mol. Biochem. Parasitol. 1996;80(1):27–39. doi: 10.1016/0166-6851(96)02660-6. PubMed DOI

Lim B.L., Heyneman D. Host-parasite studies of Angiostrongylus cantonensis (Nematoda, Metastrongylidae) in Malaysian rodents: natural infection of rodents and molluscs in urban and rural areas of central Malaya. Ann. Trop. Med. Parasitol. 1965;59(4):425–433. doi: 10.1080/00034983.1965.11686328. PubMed DOI

Lim S.Y.M., Alshagga M., Kong C., Alshawsh M.A., Alshehade S.A., Pan Y. CYP35 family in Caenorhabditis elegans biological processes: fatty acid synthesis, xenobiotic metabolism, and stress responses. Arch. Toxicol. 2022;96(12):3163–3174. doi: 10.1007/s00204-022-03382-3. PubMed DOI

Liu C.Y., Ren H.N., Song Y.Y., Sun G.G., Liu R.D., Jiang P., Long S.R., Zhang X., Wang Z.Q., Cui J. Characterization of a putative glutathione S-transferase of the parasitic nematode Trichinella spiralis. Exp. Parasitol. 2018;187:59–66. doi: 10.1016/j.exppara.2018.02.005. PubMed DOI

Liu C.Y., Song Y.Y., Ren H.N., Sun G.G., Liu R.D., Jiang P., Long S.R., Zhang X., Wang Z.Q., Cui J. Cloning and expression of a Trichinella spiralis putative glutathione S-transferase and its elicited protective immunity against challenge infections. Parasites Vectors. 2017;10(1):448. doi: 10.1186/s13071-017-2384-1. PubMed DOI PMC

Liu Y., Martinez-Martinez D., Essmann C.L., Cruz M.R., Cabreiro F., Garsin D.A. Transcriptome analysis of Caenorhabditis elegans lacking heme peroxidase SKPO-1 reveals an altered response to Enterococcus faecalis. G3 (Bethesda). 2021;11(2) doi: 10.1093/g3journal/jkaa055. PubMed DOI PMC

Liu Y., Wang X., Luo X., Wang R., Zhai B., Wang P., Li J., Yang X. Transcriptomics and proteomics of Haemonchus contortus in response to ivermectin treatment. Animals. 2023;13(5):919. doi: 10.3390/ani13050919. PubMed DOI PMC

Madsen H. Biological observations upon Enterobius vermicularis (pinworm) Acta Pathol. Microbiol. Scand. 1945;22(4):392–397. doi: 10.1111/j.1699-0463.1945.tb04074.x. PubMed DOI

Maeda I., Kohara Y., Yamamoto M., Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 2001;11(3):171–176. doi: 10.1016/s0960-9822(01)00052-5. PubMed DOI

Marschall H.U., Oppermann U.C.T., Svensson S., Nordling E., Persson B., Höög J.O., Jörnvall H. Human liver class I alcohol dehydrogenase γγ isozyme: the sole cytosolic 3β-hydroxysteroid dehydrogenase of iso bile acids. Hepatology. 2000;31(4):990–996. doi: 10.1053/he.2000.5720. PubMed DOI

Martin F., Dube F., Lindsjö O.K., Eydal M., Höglund J., Bergström T.F., Tydén E. Transcriptional responses in Parascaris univalens after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole. Pasrasit. Vectors. 2020;13(1) doi: 10.1186/s13071-020-04212-0. PubMed DOI PMC

Martin R.J. Modes of action of anthelmintic drugs. Vet. J. 1997;154(1):11–34. doi: 10.1016/s1090-0233(05)80005-x. PubMed DOI

Mathew N., Srinivasan L., Karunan T., Ayyanar E., Muthuswamy K. Studies on filarial GST as a target for antifilarial drug development-in silico and in vitro inhibition of filarial GST by substituted 1,4-naphthoquinones. J. Mol. Model. 2011;17(10):2651–2657. doi: 10.1007/s00894-010-0952-9. PubMed DOI

Matoušková P., Lecová L., Laing R., Dimunová D., Vogel H., Raisová Stuchlíková L., Nguyen L.T., Kellerová P., Vokřál I., Lamka J., Szotáková B., Várady M., Skálová L. UDP-glycosyltransferase family in Haemonchus contortus: phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences. Int. J. Parasitol. Drugs Drug Resist. 2018;8(3):420–429. doi: 10.1016/j.ijpddr.2018.09.005. PubMed DOI PMC

Matoušková P., Vokřál I., Lamka J., Skálová L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32(6):481–491. doi: 10.1016/j.pt.2016.02.004. PubMed DOI

McElwee J.J., Schuster E., Blanc E., Thomas J.H., Gems D. Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J. Biol. Chem. 2004;279(43):44533–44543. doi: 10.1074/jbc.M406207200. PubMed DOI

Mederos A.E., Ramos Z., Banchero G.E. First report of monepantel Haemonchus contortus resistance on sheep farms in Uruguay. Parasites Vectors. 2014;7:598. doi: 10.1186/s13071-014-0598-z. PubMed DOI PMC

Mellor P.S. Studies on Onchocerca cervicalis railliet and henry 1910: I. Onchocerca cervicalis in British horses. J. Helminthol. 1973;47(1):97–110. doi: 10.1017/s0022149x00023774. PubMed DOI

Ménez C., Alberich M., Courtot E., Guegnard F., Blanchard A., Aguilaniu H., Lespine A. The transcription factor NHR-8: a new target to increase ivermectin efficacy in nematodes. PLoS Pathog. 2019;15(2) doi: 10.1371/journal.ppat.1007598. PubMed DOI PMC

Menzel R., Bogaert T., Achazi R. A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch. Biochem. Biophys. 2001;395(2):158–168. doi: 10.1006/abbi.2001.2568. PubMed DOI

Menzel R., Rödel M., Kulas J., Steinberg C.E.W. CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys. 2005;438(1):93–102. doi: 10.1016/j.abb.2005.03.020. PubMed DOI

Merlin A., Ravinet N., Briot L., Chauvin A., Hebert L., Valle-Casuso J.C., Delerue M. Prevalence and seasonal dynamic of gastrointestinal parasites in equids in France during two years. Prev. Vet. Med. 2024;223 doi: 10.1016/j.prevetmed.2023.106100. PubMed DOI

Miller M.J. Studies on the life history of Trichocephalus vulpis, the whipworm of dogs. Can. J. Res. 1947;25(1):1–11. doi: 10.1139/cjr47d-001. PubMed DOI

Min H., Kawasaki I., Gong J., Shim Y.H. Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans. Mol. Cell. 2015;38(3):236–242. doi: 10.14348/molcells.2015.2282. PubMed DOI PMC

Miranda-Miranda E., Cossío-Bayúgar R., Trejo-Castro L., Aguilar-Díaz H. Single amino acid polymorphisms in the Fasciola hepatica carboxylesterase type B gene and their potential role in anthelmintic resistance. 2023;12(10):1255. doi: 10.3390/pathogens12101255. PubMed DOI PMC

Montresor A., Gabrielli A.F. Emodepside - a promising drug for the treatment of soil-transmitted helminthiases. N. Engl. J. Med. 2023;388(20):1907–1908. doi: 10.1056/NEJMe2303793. PubMed DOI

Mozzer L.R., Coaglio A.L., Dracz R.M., Ribeiro V.M., Lima W.S. The development of Angiostrongylus vasorum (Baillet, 1866) in the freshwater snail Pomacea canaliculata (Lamarck, 1822) J. Helminthol. 2015;89(6):755–759. doi: 10.1017/S0022149X14000856. PubMed DOI

Muimo R., Isaac R.E. Properties of an arylalkylamine N-acetyltransferase from the nematode, Ascaridia galli. Comp. Biochem. Physiol., B. 1993;106(4):969–976. doi: 10.1016/0305-0491(93)90059-e. PubMed DOI

Mukherjee A., Kar I., Patra A.K. Understanding anthelmintic resistance in livestock using "omics" approaches. Environ. Sci. Pollut. Res. Int. 2023;30(60):125439–125463. doi: 10.1007/s11356-023-31045-y. PubMed DOI

Munir W.A., Barrett J. The metabolism of xenobiotic compounds by hymenolepis-diminuta (cestoda, cyclophyllidea) Parasitology. 1985;91(Pt 1):145–156. doi: 10.1017/s0031182000056584. PubMed DOI

Nayak A., Gayen P., Saini P., Mukherjee N., Babu S.P. Molecular evidence of curcumin-induced apoptosis in the filarial worm Setaria cervi. Parasitol. Res. 2012;111(3):1173–1186. doi: 10.1007/s00436-012-2948-0. PubMed DOI

Ndzeshang L.B., Fombad F.F., Njouendou A.J., Chunda V.C., Gandjui N.V.T., Akumtoh D.N., Chounna P.W.N., Steven A., Pionnier N.P., Layland L.E., Ritter M., Hoerauf A., Taylor M.J., Turner J.D., Wanji S. Generation of Loa loa infective larvae by experimental infection of the vector, Chrysops silacea. PLoS Neglected Trop. Dis. 2020;14(8) doi: 10.1371/journal.pntd.0008415. PubMed DOI PMC

Niciura S.C.M., Cruvinel G.G., Moraes C.V., Chagas A.C.S., Esteves S.N., Benavides M.V., Amarante A.F.T. In vivo selection for Haemonchus contortus resistance to monepantel. J. Helminthol. 2019;94:e46. doi: 10.1017/S0022149X19000221. PubMed DOI

Nixon S.A., Welz C., Woods D.J., Costa-Junior L., Zamanian M., Martin R.J. Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. Int. J. Parasitol. Drugs Drug Resist. 2020;14:8–16. doi: 10.1016/j.ijpddr.2020.07.001. PubMed DOI PMC

Nordling E., Jörnvall H., Persson B. Medium-chain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. Eur. J. Biochem. 2002;269(17):4267–4276. doi: 10.1046/j.1432-1033.2002.03114.x. PubMed DOI

Norris D.E., Overstreet R.M. The Public health implications of larval Thynnascaris nematodes from shellfish. J. Food Protect. 1976;39(1):47–54. doi: 10.4315/0022-2747-39.1.47. DOI

O'Hanlon G.M., Cleator M., Mercer J.G., Howells R.E., Rees H.H. Metabolism and fate of ecdysteroids in the nematodes Ascaris suum and Parascaris equorum. Mol. Biochem. Parasitol. 1991;47(2):179–187. doi: 10.1016/0166-6851(91)90177-8. PubMed DOI

O'Hanlon G.M., Howarth O.W., Rees H.H. Identification of ecdysone 25-O-beta-D-glucopyranoside as a new metabolite of ecdysone in the nematode Parascaris equorum. Biochem. J. 1987;248(1):305–307. doi: 10.1042/bj2480305. PubMed DOI PMC

Oda S., Fukami T., Yokoi T., Nakajima M. Epigenetic regulation of the tissue-specific expression of human UDP-glucuronosyltransferase (UGT) 1A10. Biochem. Pharmacol. 2014;87(4):660–667. doi: 10.1016/j.bcp.2013.11.001. PubMed DOI

Oppermann U. Carbonyl reductases: the complex relationships of mammalian carbonyland quinone-reducing enzymes and their role in physiology. Annu. Rev. Pharmacol. Toxicol. 2007;47:293–322. doi: 10.1146/annurev.pharmtox.47.120505.105316. PubMed DOI

Patananan A.N., Budenholzer L.M., Eskin A., Torres E.R., Clarke S.G. Ethanol-induced differential gene expression and acetyl-CoA metabolism in a longevity model of the nematode Caenorhabditis elegans. Exp. Gerontol. 2015;61:20–30. doi: 10.1016/j.exger.2014.11.010. PubMed DOI PMC

Pedroza-Gomez Y.J., Cossio-Bayugar R., Aguilar-Diaz H., Scarcella S., Reynaud E., Sanchez-Carbente M.D., Narvaez-Padilla V., Miranda-Miranda E. Transcriptome-based identification of a functional Fasciola hepatica carboxylesterase B. Pathogens. 2021;10(11):1454. doi: 10.3390/pathogens10111454. PubMed DOI PMC

Pemberton K.D., Barrett J. The detoxification of xenobiotic compounds by Onchocerca gutturosa (Nematoda: filarioidea) Int. J. Parasitol. 1989;19(8):875–878. doi: 10.1016/0020-7519(89)90113-6. PubMed DOI

Penning T.M. The aldo-keto reductases (AKRs): overview. Chem. Biol. Interact. 2015;234:236–246. doi: 10.1016/j.cbi.2014.09.024. PubMed DOI PMC

Persson B., Kallberg Y., Bray J.E., Bruford E., Dellaporta S.L., Favia A.D., Duarte R.G., Jörnvall H., Kavanagh K.L., Kedishvili N., Kisiela M., Maserk E., Mindnich R., Orchard S., Penning T.M., Thornton J.M., Adamski J., Oppermann U. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem. Biol. Interact. 2009;178(1–3):94–98. doi: 10.1016/j.cbi.2008.10.040. PubMed DOI PMC

Persson B., Zigler J.S., Jr., Jörnvall H. A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins. Eur. J. Biochem. 1994;226(1):15–22. doi: 10.1111/j.1432-1033.1994.tb20021.x. PubMed DOI

Petalcorin M.I.R., Joshua G.W., Agapow P.M., Dolphin C.T. The fmo genes of Caenorhabditis elegans and C. briggsae: characterisation, gene expression and comparative genomic analysis. Gene. 2005;346:83–96. doi: 10.1016/j.gene.2004.09.021. PubMed DOI

Piaggi S., Salvetti A., Gomez-Morales M.A., Pinto B., Bruschi F. Glutathione-S-transferase omega 1 and nurse cell formation during experimental Trichinella infection. Vet. Parasitol. 2021;297 doi: 10.1016/j.vetpar.2020.109114. PubMed DOI

Polak I., Stryinski R., Podolska M., Pawlak J., Bittner M.W., Wisniewski G., Sienkiewicz-Szlapka E., Lopienska-Biernat E. Drug efficacy on zoonotic nematodes of the Anisakidae family: new metabolic data. Parasitology. 2022;149(8):1065–1077. doi: 10.1017/S0031182022000543. PubMed DOI PMC

Poulin R. Model worms: knowledge gains and risks associated with the use of model species in parasitological research. Parasitology. 2023;150(11):967–978. doi: 10.1017/S0031182023000963. PubMed DOI PMC

Precious W.Y., Barrett J. The possible absence of cytochrome P-450 linked xenobiotic metabolism in helminths. Biochim. Biophys. Acta. 1989;992(2):215–222. doi: 10.1016/0304-4165(89)90013-5. PubMed DOI

Prichard R.K. Anthelmintics and control. Vet. Parasitol. 1988;27(1–2):97–109. doi: 10.1016/0304-4017(88)90066-0. PubMed DOI

Prichard R.K., Hall C.A., Kelly J.D., Martin I.C., Donald A.D. The problem of anthelmintic resistance in nematodes. Aust. Vet. J. 1980;56(5):239–251. doi: 10.1111/j.1751-0813.1980.tb15983.x. PubMed DOI

Raisová Stuchlíková L., Matoušková P., Vokřál I., Lamka J., Szotáková B., Sečkařová A., Dimunová D., Nguyen L.T., Várady M., Skálová L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int. J. Parasitol. Drugs Drug Resist. 2018;8(1):50–58. doi: 10.1016/j.ijpddr.2018.01.005. PubMed DOI PMC

Ransom B.H. The life history of a parasitic nematode--Habronema muscae. Science. 1911;34(881):690–692. doi: 10.1126/science.34.881.690. PubMed DOI

Ransome B.H. Circular of the Bureau of Animal Industry. United States Department of Agriculture 93; 1906. The life history of the Twisted wireworm (Haemonchus contortus) of sheep and other ruminants; pp. 1–7.

Rao Sundar S. Records of findings of adult Wuchereria (Filaria) bancrofti in India. Indian Med. Gaz. 1930;65(9):481–483. PubMed PMC

Reichert K., Menzel R. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. Chemosphere. 2005;61(2):229–237. doi: 10.1016/j.chemosphere.2005.01.077. PubMed DOI

Rodrigues-Lima F., Dupret J.M. In silico sequence analysis of arylamine N-acetyltransferases: evidence for an absence of lateral gene transfer from bacteria to vertebrates and first description of paralogs in bacteria. Biochem. Bioph. Res. Co. 2002;293(2):783–792. doi: 10.1016/S0006-291X(02)00299-1. PubMed DOI

Rose J.H. Metastrongylus apri the pig lungworm. Observations on the free-living embryonated egg and the larva in the intermediate host. Parasitology. 1959;49:439–447. doi: 10.1017/s0031182000026962. PubMed DOI

Rychlá N., Navrátilová M., Kohoutová E., Raisová Stuchlíková L., Štěrbová K., Krátký J., Matoušková P., Szotáková B., Skálová L. Flubendazole carbonyl reduction in drug-susceptible and drug-resistant strains of the parasitic nematode Haemonchus contortus: changes during the life cycle and possible inhibition. Vet. Res. 2024;55:7. doi: 10.1186/s13567-023-01264-9. PubMed DOI PMC

Saeed H.M., Mostafa M.H., O'Connor P.J., Rafferty J.A., Doenhoff M.J. Evidence for the presence of active cytochrome P450 systems in Schistosoma mansoni and Schistosoma haematobium adult worms. FEBS Lett. 2002;519(1–3):205–209. doi: 10.1016/s0014-5793(02)02755-2. PubMed DOI

Saemi Soudkolaei A., Kalidari G.A., Borji H. Anthelmintic efficacy of fenbendazole and levamisole in native fowl in northern Iran. Parasites Vectors. 2021;14(1):104. doi: 10.1186/s13071-021-04605-9. PubMed DOI PMC

Saini P., Gayen P., Kumar D., Nayak A., Mukherjee N., Mukherjee S., Pal B.C., Babu S.P. Antifilarial effect of ursolic acid from Nyctanthes arbortristis: molecular and biochemical evidences. Parasitol. Int. 2014;63(5):717–728. doi: 10.1016/j.parint.2014.06.008. PubMed DOI

Saleem S., Böhme A., Schüüermann G. Baseline narcosis for the glass-vial 96-h growth inhibition of the nematode C. elegans and its use for identifying electrophilic and pro-electrophilic toxicity. Environ. Sci. Technol. 2023;57(4):1692–1700. doi: 10.1021/acs.est.2c05217. PubMed DOI

Sangster N.C., Cowling A., Woodgate R.G. Ten events that defined anthelmintic resistance research. Trends Parasitol. 2018;34(7):553–563. doi: 10.1016/j.pt.2018.05.001. PubMed DOI

Sarai R.S., Kopp S.R., Coleman G.T., Kotze A.C. Drug-efflux and target-site gene expression patterns in Haemonchus contortus larvae able to survive increasing concentrations of levamisole in vitro. Int. J. Parasitol. Drugs Drug Resist. 2014;4(2):77–84. doi: 10.1016/j.ijpddr.2014.02.001. PubMed DOI PMC

Scarcella S., Miranda-Miranda E., Cossío-Bayúgar R., Ceballos L., Fernandez V., Solana H. Increase of carboxylesterase activity in Fasciola hepatica recovered from triclabendazole treated sheep. Mol. Biochem. Parasitol. 2012;185(2):151–153. doi: 10.1016/j.molbiopara.2012.07.001. PubMed DOI

Segura-Cabrera A., Bocanegra-Garcia V., Lizarazo-Ortega C., Guo X., Correa-Basurto J., Rodriguez-Perez M.A. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design. J. Comput. Aided Mol. Des. 2011;25(12):1107–1119. doi: 10.1007/s10822-011-9489-y. PubMed DOI

Senior D.F., Solomon G., Goldschimdt M., Joyce T., Bovee K. Capillaria plica infection in dogs. J. Am. Vet. Med. Assoc. 1980;176(9):901–905. PubMed

Shaikh N., Waterholter A., Gnirck A.C., Becker M., Adamiak V., Henneken L., Wunderlich M., Hartmann W., Linnemann L., Huber T.B., Krebs C.F., Panzer U., Locksley R.M., Wilhelm C., Breloer M., Turner J.E. Retinoic acid drives intestine-specific adaptation of effector ILC2s originating from distant sites. J. Exp. Med. 2023;220(12) doi: 10.1084/jem.20221015. PubMed DOI PMC

Shamsi S. Parasite loss or parasite gain? Story of Contracaecum nematodes in antipodean waters. Parasite Epidemiol. Control. 2019;4 doi: 10.1016/j.parepi.2019.e00087. PubMed DOI PMC

Shoop W.L., Mrozik H., Fisher M.H. Structure and activity of avermectins and milbemycins in animal health. Vet. Parasitol. 1995;59(2):139–156. doi: 10.1016/0304-4017(94)00743-v. PubMed DOI

Schacher J.F. A contribution to the life history and larval morphology of Toxocara canis. J. Parasitol. 1957;43(6):599–610. PubMed

Schwartz B., Alicata J.E. Life history of lungworm parasitic in swine. Techn. Bull. U.S.D.A. 1934;456:1–42.

Schwartz H.T., Tan C.H., Peraza J., Raymundo K.L.T., Sternberg P.W. Molecular identification of a peroxidase gene controlling body size in the entomopathogenic nematode Steinernema hermaphroditum. Genetics. 2023;226(2) doi: 10.1093/genetics/iyad209. PubMed DOI PMC

Simmer F., Moorman C., van der Linden A.M., Kuijk E., van den Berghe P.V., Kamath R.S., Fraser A.G., Ahringer J., Plasterk R.H. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003;1(1):E12. doi: 10.1371/journal.pbio.0000012. PubMed DOI PMC

Škarydová L., Skarka A., Solich P., Wsól V. Enzyme stereospecificity as a powerful tool in searching for new enzymes. Curr. Drug Metabol. 2010;11(6):547–559. doi: 10.2174/138920010791636194. PubMed DOI

Solana H.D., Rodriguez J.A., Lanusse C.E. Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites. Parasitol. Res. 2001;87(4):275–280. doi: 10.1007/pl00008578. PubMed DOI

Souhei M., Katsufumi D., Kazushu N. Sulfation and related genes in Caenorhabditis elegans. TIGG. 2009;21(119):179–191. doi: 10.4052/tigg.21.179. DOI

Spratt D.M., Beveridge I., Andrews J.R., Dennett X. Haycocknema perplexum n. g., n. sp. (Nematoda: robertdollfusidae): an intramyofibre parasite in man. Syst. Parasitol. 1999;43(2):123–131. doi: 10.1023/a:1006158218854. PubMed DOI

Stasiuk S.J., MacNevin G., Workentine M.L., Gray D., Redman E., Bartley D., Morrison A., Sharma N., Colwell D., Ro D.K., Gilleard J.S. Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. Int. J. Parasitol. Drugs Drug Resist. 2019;11:13–29. doi: 10.1016/j.ijpddr.2019.09.001. PubMed DOI PMC

Stevens L., Kieninger M., Chan B., Wood J.M.D., Gonzalez de la Rosa P., Allen J., Blaxter M. The genome of Litomosoides sigmodontis illuminates the origins of Y chromosomes in filarial nematodes. PLoS Genet. 2024;20(1) doi: 10.1371/journal.pgen.1011116. PubMed DOI PMC

Stevens L., Martinez-Ugalde I., King E., Wagah M., Absolon D., Bancroft R., Gonzalez de la Rosa P., Hall J.L., Kieninger M., Kloch A., Pelan S., Robertson E., Pedersen A.B., Abreu-Goodger C., Buck A.H., Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat. Commun. 2023;14(1):7776. doi: 10.1038/s41467-023-43556-w. PubMed DOI PMC

Stryinski R., Polak I., Gawryluk A., Rosa P., Lopienska-Biernat E. The response of Anisakis simplex (s. s.) to anthelmintics - specific changes in xenobiotic metabolic processes. Exp. Parasitol. 2024;261 doi: 10.1016/j.exppara.2024.108751. PubMed DOI

Stuchlíková L., Jirásko R., Vokřál I., Valát M., Lamka J., Szotáková B., Holcapek M., Skálová L. Metabolic pathways of anthelmintic drug monepantel in sheep and in its parasite (Haemonchus contortus) Drug Test. Anal. 2014;6(10):1055–1062. doi: 10.1002/dta.1630. PubMed DOI

Sumida A., Kinoshita K., Fukuda T., Matsuda H., Yamamoto I., Inaba T., Azuma J. Relationship between mRNA levels quantified by reverse transcription-competitive PCR and metabolic activity of CYP3A4 and CYP2E1 in human liver. Biochem. Bioph. Res. Co. 1999;262(2):499–503. doi: 10.1006/bbrc.1999.1233. PubMed DOI

Sureshan M., Prabhu D., Rajamanikandan S., Saraboji K. Discovery of potent inhibitors targeting glutathione S-transferase of Wuchereria bancrofti: a step toward the development of effective anti-filariasis drugs. Mol. Divers. 2024;28(2):765–785. doi: 10.1007/s11030-023-10617-7. PubMed DOI

Swan G.E. The pharmacology of halogenated salicylanilides and their anthelmintic use in animals. J. S. Afr. Vet. Assoc. 1999;70(2):61–70. doi: 10.4102/jsava.v70i2.756. PubMed DOI

Szotáková B., Baliharová V., Lamka J., Nozinová E., Wsól V., Velík J., Machala M., Neca J., Soucek P., Susová S., Skálová L. Comparison of in vitro activities of biotransformation enzymes in pig, cattle, goat and sheep. Res. Vet. Sci. 2004;76(1):43–51. doi: 10.1016/s0034-5288(03)00143-7. PubMed DOI

Štěrbová K., Raisová Stuchlíková L., Rychlá N., Kohoutová K., Babičková M., Skálová L., Matoušková P. Phylogenetic and transcriptomic study of aldo-keto reductases in Haemonchus contortus and their inducibility by flubendazole. Int. J. Parasitol. Drugs Drug Resist. 2024;25 doi: 10.1016/j.ijpddr.2024.100555. PubMed DOI PMC

Štěrbová K., Rychlá N., Matoušková P., Skálová L., Raisová Stuchlíková L. Short-chain dehydrogenases in Haemonchus contortus: changes during life cycle and in relation to drug-resistance. Vet. Res. 2023;54(1):19. doi: 10.1186/s13567-023-01148-y. PubMed DOI PMC

Tan T.K., Lim Y.A.L., Chua K.H., Chai H.C., Low V.L., Bathmanaban P., Affendi S., Wang D., Panchadcharam C. Characterization of benzimidazole resistance in Haemonchus contortus: integration of phenotypic, genotypic and proteomic approaches. Parasitol. Res. 2020;119(9):2851–2862. doi: 10.1007/s00436-020-06790-5. PubMed DOI

Taubert S., Ward J.D., Yamamoto K.R. Nuclear hormone receptors in nematodes: evolution and function. Mol. Cell. Endocrinol. 2011;334(1–2):49–55. doi: 10.1016/j.mce.2010.04.021. PubMed DOI PMC

Thein M.C., Winter A.D., Stepek G., McCormack G., Stapleton G., Johnstone I.L., Page A.P. Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in Caenorhabditis elegans. J. Biol. Chem. 2009;284(26):17549–17563. doi: 10.1074/jbc.M900831200. PubMed DOI PMC

Traversa D., Otranto D., Iorio R., Carluccio A., Contri A., Paoletti B., Bartolini R., Giangaspero A. Identification of the intermediate hosts of Habronema microstoma and Habronema muscae under field conditions. Med. Vet. Entomol. 2008;22(3):283–287. doi: 10.1111/j.1365-2915.2008.00737.x. PubMed DOI

Tuersong W., Liu X., Wang Y.F., Wu S.M., Qin P.X., Zhu S.N., Liu F., Wang C.Q., Hu M. Comparative metabolome analyses of ivermectin-resistant and -susceptible strains of Haemonchus contortus. Animals. 2023;13(3):456. doi: 10.3390/ani13030456. PubMed DOI PMC

van Wyk J.A. Refugia-overlooked as perhaps the most potent factor concerning the development of anthelmintic resistance. Onderstepoort J. Vet. Res. 2001;68(1):55–67. PubMed

Vokřál I., Bartíková H., Prchal L., Stuchlíková L., Skálová L., Szotáková B., Lamka J., Várady M., Kubíček V. The metabolism of flubendazole and the activities of selected biotransformation enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Parasitology. 2012;139(10):1309–1316. doi: 10.1017/S0031182012000595. PubMed DOI

Vokřál I., Jedličková V., Jirásko R., Stuchlíková L., Bártíkova H., Skálová L., Lamka J., Holčapek M., Szotáková B. The metabolic fate of ivermectin in host (Ovis aries) and parasite (Haemonchus contortus) Parasitology. 2013;140(3):361–367. doi: 10.1017/S0031182012001680. PubMed DOI

Vokřál I., Podlipná R., Matoušková P., Skálová L. Anthelmintics in the environment: their occurrence, fate, and toxicity to non-target organisms. Chemosphere. 2023;345 doi: 10.1016/j.chemosphere.2023.140446. PubMed DOI

von Samson-Himmelstjerna G., Walsh T.K., Donnan A.A., Carrière S., Jackson F., Skuce P.J., Rohn K., Wolstenholme A.J. Molecular detection of benzimidazole resistance in Haemonchus contortus using real-time PCR and pyrosequencing. Parasitology. 2009;136(3):349–358. doi: 10.1017/S003118200800543X. PubMed DOI

Walker D.H. The gapeworm of fowls (Syngamus trachealis). The earthworm (Lumbricus terrestris) its original host. Also, on the prevention of the disease called gapes, which is caused by this parasite. Bull. Buffalo Soc. Nat. Sci. 1886;234:103–118.

Walsh T.K., Donnan A.A., Jackson F., Skuce P., Wolstenholme A.J. Detection and measurement of benzimidazole resistance alleles in Haemonchus contortus using real-time PCR with locked nucleic acid Taqman probes. Vet. Parasitol. 2007;144(3–4):304–312. doi: 10.1016/j.vetpar.2006.10.014. PubMed DOI

Wang D.D., Zou L.W., Jin Q., Hou J., Ge G.B., Yang L. Human carboxylesterases: a comprehensive review. Acta Pharm. Sin. B. 2018;8(5):699–712. doi: 10.1016/j.apsb.2018.05.005. PubMed DOI PMC

Webber W.A., Hawking F. Experimental maintenance of Dirofilaria repens and D. immitis in dogs. Exp. Parasitol. 1955;4(2):143–164. doi: 10.1016/0014-4894(55)90007-2. PubMed DOI

Wei J., Damania A., Gao X., Liu Z., Mejia R., Mitreva M., Strych U., Bottazzi M.E., Hotez P.J., Zhan B. The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates. Parasites Vectors. 2016;9(1):518. doi: 10.1186/s13071-016-1795-8. PubMed DOI PMC

WHO Global programme to eliminate lymphatic filariasis. 2021. https://www.who.int/publications/i/item/who-wer9741-513-524

Wrzesinska-Krupa B., Szmatola T., Praczyk T., Obrepalska-Steplowska A. Transcriptome analysis indicates the involvement of herbicide-responsive and plant-pathogen interaction pathways in the development of resistance to ACCase inhibitors in Apera spica-venti. Pest Manag. Sci. 2023;79(5):1944–1962. doi: 10.1002/ps.7370. PubMed DOI

Wu H., Huang C., Taki F.A., Zhang Y., Dobbins D.L., Li L., Yan H., Pan X. Benzo-alpha-pyrene induced oxidative stress in Caenorhabditis elegans and the potential involvements of microRNA. Chemosphere. 2015;139:496–503. doi: 10.1016/j.chemosphere.2015.08.031. PubMed DOI

Xie Y., Zhou X., Chen L., Zhang Z., Wang C., Gu X., Wang T., Peng X., Yang G. Cloning and characterization of a novel sigma-like glutathione S-transferase from the giant panda parasitic nematode, Baylisascaris schroederi. Parasites Vectors. 2015;8:44. doi: 10.1186/s13071-014-0629-9. PubMed DOI PMC

Xiong L., Chen L., Chen Y., Shen N., Hua R., Yang G. Evaluation of the immunoprotective effects of eight recombinant proteins from Baylisascaris schroederi in mice model. Parasites Vectors. 2023;16(1):254. doi: 10.1186/s13071-023-05886-y. PubMed DOI PMC

Yadav M., Liebau E., Haldar C., Rathaur S. Identification of major antigenic peptide of filarial glutathione-S-transferase. Vaccine. 2011;29(6):1297–1303. doi: 10.1016/j.vaccine.2010.11.078. PubMed DOI

Yadav M., Singh A., Rathaur S., Liebau E. Structural modeling and simulation studies of Brugia malayi glutathione-S-transferase with compounds exhibiting antifilarial activity: implications in drug targeting and designing. J. Mol. Graph. Model. 2010;28(5):435–445. doi: 10.1016/j.jmgm.2009.10.003. PubMed DOI

Yang D.Q., Liu F., Bai Y., Zeng J., Hao H.N., Yue X., Hu C.X., Long S.R., Liu R.D., Wang Z.Q., Cui J. Functional characterization of a glutathione S-transferase in Trichinella spiralis invasion, development and reproduction. Vet. Parasitol. 2021;297 doi: 10.1016/j.vetpar.2020.109128. PubMed DOI

Yarmut Y., Brommer H., Weisler S., Shelah M., Komarovsky O., Steinman A. Ophthalmic and cutaneous habronemiasis in a horse: case report and review of the literature. Isr. J. Vet. Med. 2008;63(3):87–90.

Yelifari L., Frempong E., Olsen A. The intermediate hosts of Dracunculus medinensis in Northern Region, Ghana. Ann. Trop. Med. Parasitol. 2016;91(4):403–409. doi: 10.1080/00034989761021. PubMed DOI

Zajíčková M., Prchal L., Vokřál I., Nguyen L.T., Kurz T., Gasser R., Bednářová K., Mičundová M., Lungerich B., Michel O., Skálová L. Assessing the anthelmintic candidates BLK127 and HBK4 for their efficacy on Haemonchus contortus adults and eggs, and their hepatotoxicity and biotransformation. Pharmaceutics. 2022;14(4):754. doi: 10.3390/pharmaceutics14040754. PubMed DOI PMC

Zhao M.Z., Ma J.S., Li M., Zhang Y.T., Jiang B.X., Zhao X.L., Huai C., Shen L., Zhang N., He L., Qin S.Y. Cytochrome p450 enzymes and drug metabolism in humans. Int. J. Mol. Sci. 2021;22(23) doi: 10.3390/ijms222312808. PubMed DOI PMC

Ziniel P.D., Karumudi B., Barnard A.H., Fisher E.M.S., Thatcher G.R.J., Podust L.M., Williams D.L. The Schistosoma mansoni cytochrome P450 (CYP3050A1) is essential for worm survival and egg development. PLoS Neglected Trop. Dis. 2015;9(12) doi: 10.1371/journal.pntd.0004279. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...