Intracerebral recording of cortical activity related to self-paced voluntary movements: a Bereitschaftspotential and event-related desynchronization/synchronization. SEEG study
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
- MeSH
- dospělí MeSH
- elektroencefalografie * MeSH
- epilepsie patofyziologie MeSH
- evokované potenciály fyziologie MeSH
- funkční lateralita MeSH
- lidé MeSH
- mapování mozku MeSH
- mladiství MeSH
- mozek patofyziologie MeSH
- pohybová aktivita fyziologie MeSH
- supinační poloha MeSH
- záchvaty klasifikace patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
To analyze the distribution of the cortical electrical activity related to self-paced voluntary movements, i.e. the movement-related readiness potentials (Bereitschaftspotential, BP) and the event-related desynchronization (ERD) and synchronization (ERS) of cortical rhythms using intracerebral recordings. EEG was recorded in 14 epilepsy surgery candidates during preoperative video-stereo-EEG monitoring. Subjects performed self-paced hand movements, with their right and left fingers in succession. EEG signals were obtained from a total of 501 contacts using depth electrodes located in primary and nonprimary cortical regions. In accordance with previous studies, BP was found consistently in the primary motor (M1) and somatosensory (S1) cortex, the supplementary motor area (SMA), and in a few recordings also in the cingulate cortex and in the dorsolateral prefrontal and premotor cortex. ERD and ERS of alpha and beta rhythms were also observed in these cortical regions. The distribution of contacts showing ERD or ERS was larger than the distribution of those showing BP. In contrast to BP, ERD and ERS frequently occurred in the lateral and mesial temporal cortex and the inferior parietal lobule. The number of contacts and cortical regions showing ERD and ERS and not BP suggests that the two electrophysiological phenomena are differently involved in the preparation and execution of simple voluntary movements. Substantial differences between BP and ERD in spatial distribution and the widespread topography of ERD/ERS in temporal and higher-order motor regions suggest that oscillatory cortical changes are coupled with cognitive processes supporting movement tasks, such as memory, time interval estimation, and attention.
Zobrazit více v PubMed
Acta Neurol Scand. 1993 Aug;88(2):129-35 PubMed
Electroencephalogr Clin Neurophysiol. 1998 Oct;107(4):277-86 PubMed
Trends Neurosci. 1994 Feb;17(2):75-9 PubMed
Electroencephalogr Clin Neurophysiol. 1991 Aug;79(2):81-93 PubMed
Eur J Neurosci. 1998 Feb;10(2):765-70 PubMed
Electroencephalogr Clin Neurophysiol. 1994 Oct;93(5):380-9 PubMed
J Neurosci. 2001 Dec 1;21(23):9377-86 PubMed
Electroencephalogr Clin Neurophysiol. 1995 Dec;95(6):453-62 PubMed
Brain. 1998 Dec;121 ( Pt 12):2271-99 PubMed
Exp Brain Res. 2000 Sep;134(1):49-57 PubMed
Clin Neurophysiol. 1999 Nov;110(11):1842-57 PubMed
Science. 1994 Oct 21;266(5184):458-61 PubMed
Exp Brain Res. 2003 Apr;149(3):401-4 PubMed
Neuroimage. 1998 Aug;8(2):214-20 PubMed
Physiol Rev. 1988 Jul;68(3):649-742 PubMed
Brain. 2000 Jun;123 ( Pt 6):1203-15 PubMed
Neurophysiol Clin. 1999 Feb;29(1):53-70 PubMed
Electroencephalogr Clin Neurophysiol. 1977 Jun;42(6):817-26 PubMed
Neurosci Lett. 1995 Aug 18;196(1-2):21-4 PubMed
Brain. 1992 Aug;115 ( Pt 4):1017-43 PubMed
Electroencephalogr Clin Neurophysiol. 1980 Aug;49(3-4):213-26 PubMed
Neuroreport. 1996 Apr 26;7(6):1161-4 PubMed
Electroencephalogr Clin Neurophysiol. 1993 May;86(5):353-6 PubMed
Electroencephalogr Clin Neurophysiol. 1979 Feb;46(2):138-46 PubMed
Neuroimage. 2002 Sep;17(1):161-73 PubMed
Clin Neurophysiol. 2003 Jul;114(7):1226-36 PubMed
Brain. 1998 Dec;121 ( Pt 12):2301-15 PubMed
Neural Plast. 2000;7(1-2):65-72 PubMed
Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 May 10;284:1-17 PubMed
Neuroreport. 1996 May 17;7(7):1235-40 PubMed
Neuroreport. 2001 Apr 17;12(5):939-42 PubMed
Brain. 1999 Feb;122 ( Pt 2):351-68 PubMed
J Clin Exp Neuropsychol. 1999 Jun;21(3):385-96 PubMed
Cereb Cortex. 2003 May;13(5):475-85 PubMed
Electroencephalogr Clin Neurophysiol. 1997 Nov;103(5):499-515 PubMed
Electroencephalogr Clin Neurophysiol. 1981 Mar;51(3):253-64 PubMed
Neuroreport. 1996 Dec 20;8(1):203-6 PubMed
J Neurophysiol. 1999 Jun;81(6):3065-77 PubMed
Epilepsia. 1997 Jun;38(6):655-62 PubMed
Ross Fiziol Zh Im I M Sechenova. 2001 Feb;87(2):170-81 PubMed
Neurophysiol Clin. 2001 Aug;31(4):253-61 PubMed
Mov Disord. 2001 Jul;16(4):698-704 PubMed
Exp Brain Res. 1969;7(2):158-68 PubMed
Electroencephalogr Clin Neurophysiol. 1975 Jan;38(1):93-6 PubMed
Neuroimage. 1999 Dec;10(6):658-65 PubMed
Brain Res Cogn Brain Res. 1996 Oct;4(3):171-83 PubMed
Electroencephalogr Clin Neurophysiol. 1959 Aug;11(3):497-510 PubMed
Brain. 1995 Feb;118 ( Pt 1):227-42 PubMed
Brain Res. 1986 Mar 19;368(2):361-5 PubMed
Brain Topogr. 1994 Spring;6(3):237-44 PubMed
Neuroimage. 2003 Aug;19(4):1349-60 PubMed
Eur J Neurosci. 2005 Mar;21(5):1223-35 PubMed
Neuroimage. 2003 Sep;20(1):404-12 PubMed
Neuroscience. 1994 May;60(2):537-50 PubMed
Electroencephalogr Clin Neurophysiol. 1996 Apr;98(4):281-93 PubMed
Brain. 1988 Jun;111 ( Pt 3):719-36 PubMed
Neuroreport. 1997 May 27;8(8):1987-93 PubMed
Electroencephalogr Clin Neurophysiol. 1994 Apr;90(4):273-83 PubMed
Electroencephalogr Clin Neurophysiol. 1992 Jul;83(1):62-9 PubMed
Annu Rev Neurosci. 1986;9:357-81 PubMed
Int J Psychophysiol. 1997 Jun;26(1-3):121-35 PubMed
Electroencephalogr Clin Neurophysiol. 1982 Sep;54(3):322-35 PubMed
Rev Neurol (Paris). 1952;87(2):176-82 PubMed
Neuropsychology. 2001 Jan;15(1):58-68 PubMed
Neuroimage. 2005 Feb 15;24(4):1012-24 PubMed
Clin Neurophysiol. 2003 Jan;114(1):107-19 PubMed
Neurosci Lett. 2000 Apr 21;284(1-2):41-4 PubMed