The parameters of the stochastic leaky integrate-and-fire neuronal model
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- akční potenciály fyziologie MeSH
- buněčná membrána fyziologie MeSH
- lidé MeSH
- mozek fyziologie MeSH
- nervové dráhy fyziologie MeSH
- nervový přenos fyziologie MeSH
- neuronové sítě * MeSH
- neurony fyziologie MeSH
- počítačové zpracování signálu MeSH
- Poissonovo rozdělení MeSH
- stochastické procesy MeSH
- synapse fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Five parameters of one of the most common neuronal models, the diffusion leaky integrate-and-fire model, also known as the Ornstein-Uhlenbeck neuronal model, were estimated on the basis of intracellular recording. These parameters can be classified into two categories. Three of them (the membrane time constant, the resting potential and the firing threshold) characterize the neuron itself. The remaining two characterize the neuronal input. The intracellular data were collected during spontaneous firing, which in this case is characterized by a Poisson process of interspike intervals. Two methods for the estimation were applied, the regression method and the maximum-likelihood method. Both methods permit to estimate the input parameters and the membrane time constant in a short time window (a single interspike interval). We found that, at least in our example, the regression method gave more consistent results than the maximum-likelihood method. The estimates of the input parameters show the asymptotical normality, which can be further used for statistical testing, under the condition that the data are collected in different experimental situations. The model neuron, as deduced from the determined parameters, works in a subthreshold regimen. This result was confirmed by both applied methods. The subthreshold regimen for this model is characterized by the Poissonian firing. This is in a complete agreement with the observed interspike interval data.
Zobrazit více v PubMed
Brain Res Dev Brain Res. 2000 Feb 7;119(2):297-305 PubMed
J Comput Neurosci. 1996 Dec;3(4):275-99 PubMed
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Dec;62(6 Pt B):8427-37 PubMed
J Neurosci. 2003 Sep 10;23(23):8281-90 PubMed
Biol Cybern. 1979 Dec;35(4):213-20 PubMed
Trends Neurosci. 1992 Nov;15(11):414-21 PubMed
J Neurophysiol. 2000 Mar;83(3):1452-68 PubMed
Neural Comput. 2004 Dec;16(12):2533-61 PubMed
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051924 PubMed
Neural Comput. 1999 May 15;11(4):935-51 PubMed
Biol Cybern. 1987;56(1):19-26 PubMed
J Neurophysiol. 1993 Apr;69(4):1292-313 PubMed
Neural Comput. 2004 Oct;16(10):2101-24 PubMed
J Theor Biol. 1978 Mar 20;71(2):167-83 PubMed
Biol Cybern. 1995 Aug;73(3):209-221 PubMed
J Neurobiol. 2005 Nov;65(2):97-114 PubMed
Neural Comput. 2005 Apr;17(4):923-47 PubMed
Comput Biol Med. 1997 Jan;27(1):1-7 PubMed
Neuron. 2001 Jun;30(3):803-17 PubMed
Biophys J. 1965 Mar;5:173-94 PubMed
Brain Res. 1994 Oct 31;662(1-2):31-44 PubMed
Biophys J. 1964 Sep;4(5):417-9 PubMed
J Comput Neurosci. 1994 Jun;1(1-2):39-60 PubMed
Biosystems. 2000 Oct-Dec;58(1-3):41-8 PubMed
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):011907 PubMed
J Neurophysiol. 2003 Sep;90(3):1598-612 PubMed
J Neurosci. 2004 Mar 24;24(12):3060-9 PubMed
Comput Biol Med. 1994 Mar;24(2):91-101 PubMed
Curr Opin Neurobiol. 2001 Aug;11(4):475-80 PubMed
Math Biosci. 1989 Apr;93(2):191-215 PubMed