• This record comes from PubMed

Estimation of the synaptic input firing rates and characterization of the stimulation effects in an auditory neuron

. 2015 ; 9 () : 59. [epub] 20150518

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

To understand information processing in neuronal circuits, it is important to infer how a sensory stimulus impacts on the synaptic input to a neuron. An increase in neuronal firing during the stimulation results from pure excitation or from a combination of excitation and inhibition. Here, we develop a method for estimating the rates of the excitatory and inhibitory synaptic inputs from a membrane voltage trace of a neuron. The method is based on a modified Ornstein-Uhlenbeck neuronal model, which aims to describe the stimulation effects on the synaptic input. The method is tested using a single-compartment neuron model with a realistic description of synaptic inputs, and it is applied to an intracellular voltage trace recorded from an auditory neuron in vivo. We find that the excitatory and inhibitory inputs increase during stimulation, suggesting that the acoustic stimuli are encoded by a combination of excitation and inhibition.

See more in PubMed

Abbott L. F., Kepler T. (1990). Model neurons: from Hodgkin-Huxley to Hopfield, in Statistical Mechanics of Neural Networks, ed Garrido L. (Berlin: Springer-Verlag; ), 5–18.

Azouz R., Gray C. M. (2000). Dynamic spike threshold reveals a mechanism for synap- tic coincidence detection in cortical neurons in vivo. Proc. Natl. Acad. Sci. U.S.A. 97, 8110–8115. 10.1073/pnas.130200797 PubMed DOI PMC

Bedard C., Behuret S., Deleuze C., Bal T., Destexhe A. (2012). Oversampling method to extract excitatory and inhibitory conductances from single-trial membrane potential recordings. J. Neurosci. Method 210, 3–14. 10.1016/j.jneumeth.2011.09.010 PubMed DOI

Berg R. W., Alaburda A., Hounsgaard J. (2007). Balanced inhibition and excitation drive spike activity in spinal half-centers. Science 315, 390–393. 10.1126/science.1134960 PubMed DOI

Berg R. W., Ditlevsen S. (2013). Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations. J. Neurophysiol. 110, 1021–1034. 10.1152/jn.00006.2013 PubMed DOI

Borg-Graham L. J., Monier C., Fregnac Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373. 10.1038/30735 PubMed DOI

Braitenberg V., Schuz A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity. Berlin: Springer.

Destexhe A., Mainen Z., Sejnowski T. J. (1998). Kinetic models of synaptic transmission, in Methods in Neuronal Modeling, eds Koch C., Segev I. (Cambridge, MA: MIT Press; ), 1–26.

Destexhe A. (1997). Conductance-based integrate-and-fire models. Neural Comput. 9, 503–514. 10.1162/neco.1997.9.3.503 PubMed DOI

Ditlevsen S., Lansky P. (2005). Estimation of the input parameters in the Ornstein—Uhlenbeck neuronal model. Phys. Rev. E 71:011907. 10.1103/PhysRevE.71.011907 PubMed DOI

Gerstner W., Kistler W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press.

Häusser M., Roth A. (1997). Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. J. Neurosci. 17, 7606–7625. PubMed PMC

He J. (2003). Slow oscillation in non-lemniscal auditory thalamus. J. Neurosci. 23, 8281–8290. PubMed PMC

Jolivet R., Lewis T. J., Gerstner W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol. 92, 959–976. 10.1152/jn.00190.2004 PubMed DOI

Kim H., Shinomoto S. (2012). Estimating nonstationary input signals from a single neuronal spike train. Phys. Rev. E 86:051903. 10.1103/PhysRevE.86.051903 PubMed DOI

Kitagawa G., Gersch W. (1996). Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics, Vol. 116 New York, NY: Springer-Verlag.

Kobayashi R., Shinomoto S. (2007). State space method for predicting the spike times of a neuron. Phys. Rev. E 75:011925. 10.1103/PhysRevE.75.011925 PubMed DOI

Kobayashi R., Shinomoto S., Lansky P. (2011a). Estimation of time-dependent input from neuronal membrane potential. Neural Comput. 23, 3070–3093. 10.1162/NECO_a_00205 PubMed DOI

Kobayashi R., Tsubo Y., Lansky P., Shinomoto S. (2011b). Estimating time-varying input signals and ion channel states from a single voltage trace of a neuron. Adv. Neural Inform. Process. Syst. 24, 217–225.

Kobayashi R. (2009). The influence of firing mechanisms on gain modulation. J. Stat. Mech. 2009:P01017 10.1088/1742-5468/2009/01/P01017 DOI

Koyama S., Shinomoto S. (2005). Empirical Bayes interpretations of random point events. J. Physics A 38, 531–537. 10.1088/0305-4470/38/29/L04 PubMed DOI

Lankarany M., Zhu W. P., Swamy M. N. S., Toyoizumi T. (2013). Inferring trial-to-trial excitatory and inhibitory synaptic inputs from membrane potential using Gaussian mixture Kalman filtering. Front. Comput. Neurosci. 7:109 10.3389/fncom.2013.00109 PubMed DOI PMC

Lansky P., Ditlevsen S. (2008). A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models. Biol. Cybern. 99, 253–262. 10.1007/s00422-008-0237-x PubMed DOI

Lansky P., Musila M., Smith C. E. (1992). Effects of afterhyperpolarization on neuronal firing. Biosystems 27, 25–38. 10.1016/0303-2647(92)90044-Y PubMed DOI

Lansky P., Sacerdote L. (2001). The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Phys. Lett. A 285, 132–140. 10.1016/S0375-9601(01)00340-1 PubMed DOI

Lansky P., Sanda P., He J. (2006). The parameters of the stochastic leaky integrate-and-fire neuronal model. J. Comput. Neurosci. 21, 211–223. 10.1007/s10827-006-8527-6 PubMed DOI

Lansky P., Sanda P., He J. (2010). Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model. J. Physiol. 104, 160–166. 10.1016/j.jphysparis.2009.11.019 PubMed DOI

Lansky P. (1983). Inference for the diffusion models of neuronal activity. Math. Biosci. 67, 247–260. 10.1016/0025-5564(83)90103-7 PubMed DOI

Magee J. C., Cook E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neurosci. 3, 895–903. 10.1038/78800 PubMed DOI

Miura K., Tsubo Y., Okada M., Fukai T. (2007). Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations. J. Neurosci. 27, 13802–13812. 10.1523/JNEUROSCI.2452-07.2007 PubMed DOI PMC

Monier C., Chavane F., Baudot P., Graham L. J., Fregnac Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37, 663–680. 10.1016/S0896-6273(03)00064-3 PubMed DOI

Monier C., Fournier J., Fregnac Y. (2008). In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J. Neurosci. Methods 169, 323–365. 10.1016/j.jneumeth.2007.11.008 PubMed DOI

Paninski L., Vidne M., DePasquale B., Ferreira D. G. (2012). Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods. J. Comput. Neurosci. 33, 1–19. 10.1007/s10827-011-0371-7 PubMed DOI

Rudolph M., Piwkowska Z., Badoual M., Bal T., Destexhe A. (2004). A method to estimate synaptic conductances from membrane potential fluctuations. J. Neurophysiol. 91, 2884–2896. 10.1152/jn.01223.2003 PubMed DOI

Rudolph M., Pospischil M., Timofeev I., Destexhe A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J. Neurosci. 27, 5280–5290. 10.1523/JNEUROSCI.4652-06.2007 PubMed DOI PMC

Shadlen M. N., Newsome W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896. PubMed PMC

Shinomoto S., Sakai Y., Funahashi S. (1999). The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput. 11, 935–951. 10.1162/089976699300016511 PubMed DOI

Smith A. C., Scalon J. D., Wirth S., Yanike M., Suzuki W. A., Brown E. N. (2010). State-space algorithms for estimating spike rate functions. Comput. Intell. Neurosci. 2010:426539 10.1155/2010/426539 PubMed DOI PMC

Softky W. R., Koch C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350. PubMed PMC

Song S., Sjöström P. J., Reigl M., Nelson S., Chklovskii D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3:e68. 10.1371/journal.pbio.0030068 PubMed DOI PMC

Sutherland C., Doiron B., Longtin A. (2009). Feedback-induced gain control in stochastic spiking networks. Biol. Cybern. 100, 475–489. 10.1007/s00422-009-0298-5 PubMed DOI

Tuckwell H. C. (1988). Introduction to Theoretical Neurobiology: Nonlinear and Stochastic Theories, Vol. 2. Cambridge: Cambridge University Press.

Wehr M., Zador A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446. 10.1038/nature02116 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...