Random distribution pattern and non-adaptivity of genome size in a highly variable population of Festuca pallens

. 2007 Jul ; 100 (1) : 141-50. [epub] 20070612

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17565968

BACKGROUND AND AIMS: The spatial and statistical distribution of genome sizes and the adaptivity of genome size to some types of habitat, vegetation or microclimatic conditions were investigated in a tetraploid population of Festuca pallens. The population was previously documented to vary highly in genome size and is assumed as a model for the study of the initial stages of genome size differentiation. METHODS: Using DAPI flow cytometry, samples were measured repeatedly with diploid Festuca pallens as the internal standard. Altogether 172 plants from 57 plots (2.25 m(2)), distributed in contrasting habitats over the whole locality in South Moravia, Czech Republic, were sampled. The differences in DNA content were confirmed by the double peaks of simultaneously measured samples. KEY RESULTS: At maximum, a 1.115-fold difference in genome size was observed. The statistical distribution of genome sizes was found to be continuous and best fits the extreme (Gumbel) distribution with rare occurrences of extremely large genomes (positive-skewed), as it is similar for the log-normal distribution of the whole Angiosperms. Even plants from the same plot frequently varied considerably in genome size and the spatial distribution of genome sizes was generally random and unautocorrelated (P > 0.05). The observed spatial pattern and the overall lack of correlations of genome size with recognized vegetation types or microclimatic conditions indicate the absence of ecological adaptivity of genome size in the studied population. CONCLUSIONS: These experimental data on intraspecific genome size variability in Festuca pallens argue for the absence of natural selection and the selective non-significance of genome size in the initial stages of genome size differentiation, and corroborate the current hypothetical model of genome size evolution in Angiosperms (Bennetzen et al., 2005, Annals of Botany 95: 127-132).

Zobrazit více v PubMed

Auquier P. Biologie de la reproduction dans le genre Festuca L. (Poaceae): 1. Systemes de pollinisation. Bulletin de la Société Royale de Botanique de Belgique. 1977;110:129–150.

Bancheva S, Greilhuber J. Genome size in Bulgarian Centaurea s.l. (Asteraceae) Plant Systematics and Evolution. 2006;257:95–117.

Bennett MD. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London, Series B. 1972;181:109–135. PubMed

Bennett MD, Leitch I. Plant DNA C-values Database. 2005 http://www.rbgkew.org.uk/cval/homepage.html. (release 4·0, October 2005) PubMed

Bennett MD, Bhandol P, Leitch IJ. Nuclear DNA amounts in angiosperms and their modern uses – 807 new estimates. Annals of Botany. 2000;86:859–909.

Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Annals of Botany. 2005;95:127–132. PubMed PMC

Botta-Dukát Z, Chytrý M, Hájková P, Havlová M. Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe. Preslia. 2005;77:89–111.

Bureš P, Pavlíček T, Horová L, Nevo E. Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at ‘Evolution Canyon’, Israel. Annals of Botany. 2004a;93:529–535. PubMed PMC

Bureš P, Wang Y-F, Horová L, Suda J. Genome size variation in Central European species of Cirsium (Compositae) and their natural hybrids. Annals of Botany. 2004b;94:353–363. PubMed PMC

Caceres ME, De Pace C, Scarascia Mugnozza GT, Kotsonis P, Ceccarelli M, Cionini PG. Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction. Theoretical and Applied Genetics. 1998;96:559–567.

Caetano-Anolles G. Grass evolution inferred from chromosomal rearrangements and geometrical and statistical features in RNA structure. Journal of Molecular Evolution. 2005;60:635–652. PubMed

Chase MW, Hanson L, Albert VA, Whitten WM, Williams NH. Life history evolution and genome size in subtribe Oncidiinae (Orchidaceae) Annals of Botany. 2005;95:191–199. PubMed PMC

Devos KM, Gale MD. Genome relationships: the grass model in current research. Plant Cell. 2000;12:637–646. PubMed PMC

ESRI Inc. 2004 ArcMap, version 8·3. License type: ArcInfo.www.esri.com .

Gaut BS. Evolutionary dynamics of grass genome. New Phytologist. 2002;154:15–28.

Gaut BS, d'Ennequin ML, Peek AS, Sawkins MC. Maize as a model for the evolution of plant nuclear genomes. Proceedings of the National Academy of Sciences of the USA. 2000;97:7008–7015. PubMed PMC

Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews. 2001;76:65–101. PubMed

Greilhuber J. Intraspecific variation in genome size: a critical reassessment. Annals of Botany. 1998;82(Suppl. A):27–35.

Greilhuber J. Intraspecific variation in genome size in Angiosperms: identifying its existence. Annals of Botany. 2005;95:91–98. PubMed PMC

Grotkopp E, Rejmanek M, Sanderson MJ, Rost TL. Evolution of genome size in pines (Pinus) and its life-history correlates: Supertree analyses. Evolution. 2004;58:1705–1729. PubMed

Hiremath SC, Nagasampige MH. Genome size variation and evolution in some species of Dalbergia Linn.f. (Fabaceae) Caryologia. 2004;57:367–372.

Hood GM. 2005 PopTools, version 2·6·9. Available on the internet. URL http://www.cse.csiro.au/poptools .

Jackson DA. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology. 1993;74:2204–2214.

Jakob SS, Meister A, Blattner FR. The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology and speciation rates. Molecular Biology and Evolution. 2004;21:860–869. PubMed

Jones N, Houben A. B chromosomes in plants: escapees from the A chromosome genome? Trends in Plant Sciences. 2003;8:417–423. PubMed

Jones N, Pasakinskiene I. Genome conflict in the Gramineae. New Phytologist. 2005;165:391–409. PubMed

Jones RN, Díez M. The B chromosome database. Cytogenetic and Genome Research. 2004;106:149–150. (http://www.bchromosomes.org/bdb/ ) PubMed

Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the USA. 2000;97:6603–6607. PubMed PMC

Kapraun DF. Nuclear DNA content estimates in multicellular eukaryotic green, red and brown algae: phylogenetic considerations. Annals of Botany. 2005;95:7–44. PubMed PMC

Knight CA, Molinari NA, Petrov DA. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany. 2005;95:177–190. PubMed PMC

Kubát K, editor. Praha: Academia; 2002. Klíč ke květeně České republiky.

Leach CR, Houben A, Field B, Pistrick K, Demidov D, Timmis JN. Molecular evidence for transcription of genes on a B chromosome in Crepis capillaris. Genetics. 2005;171:269–278. PubMed PMC

Legendre P, Legendre L. 2nd edition. Amsterdam: Elsevier; 1998. Numerical ecology.

Leitch IJ, Soltis DE, Soltis PS, Bennett MD. Evolution of DNA amounts across land plants (Embryophyta) Annals of Botany. 2005;95:207–217. PubMed PMC

Levine N. CrimeStat III: a spatial statistics program for the analysis of crime incident locations. Houston/Washington, DC: Ned Levine & Associates/National Institute of Justice; 2004.

Loureiro J, Rodriguez E, Doležel J, Santos C. Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Annals of Botany. 2006;98:515–527. PubMed PMC

Noirot M, Barre P, Louarn J, Duperray C, Hamon S. Nucleus-cytosol interactions – a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Annals of Botany. 2000;86:309–316.

Nokkala S, Nokkala C. Interaction of B chromosomes with A or B chromosomes in segregation in insects. Cytogenetic and Genome Research. 2004;106:394–397. PubMed

Obermayer R, Leitch IJ, Hanson L, Bennett MD. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Annals of Botany. 2002;90:209–217. PubMed PMC

Ohri D. Genome size variation and plant systematics. Annals of Botany. 1998;82(A):75–83.

Podani J. Introduction to the exploration of multivariate biological data. Leiden: Backhuys Publishers; 2000.

Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS. Genome evolution in the genus Sorghum (Poaceae) Annals of Botany. 2005;95:219–227. PubMed PMC

Ribeiro T, Pires B, Delgado M, Viegas W, Jones N, Morais-Cecilio L. Evidence for ‘cross-talk’ between A and B chromosomes of rye. Proceedings of the Royal Society of London, Series B. 2004;271(6):482–484. PubMed PMC

Ricroch A, Yockteng R, Brown SC, Nadot S. Evolution of genome size across some cultivated Allium species. Genome. 2005;48:511–520. PubMed

Šmarda P. DNA ploidy levels and intraspecific DNA content variability in Romanian fescues (Festuca L., Poaceae) measured in fresh and herbarium material. Folia Geoboanica. 2006;41:417–432.

Šmarda P, Bureš P. Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Annals of Botany. 2006;98:665–678. PubMed PMC

Šmarda P, Kočí K. Chromosome number variability in Central European members of the Festuca ovina and F. groups (sect. Festuca) Folia Geobotanica. 2003;38:65–95.

Šmarda P, Šmerda J, Knoll A, Bureš P, Danihelka J. Revision of Central European taxa of Festuca ser. Psammophilae Pawlus: morphometrical, karyological and AFLP analysis. Plant Systematics and Evolution. 2007 in press.

SPSS Inc. Chicago: SPSS Inc; 1998. SPSS® Base 8·0.

StatSoft Inc. 2005. STATISTICA (data analysis software system), version 7·1. www.statsoft.com .

Suda J. Czech Republic: Ph.D. Thesis, Charles University, Prague; 2004. An employment of flow cytometry into plant biosystematics.

Tracey R. Beiträge zur Karyologie, Verbreitung und Systematik des Festuca ovina Formenkreises im Osten Österreichs. Austria: University of Vienna; 1980. Ph.D. Thesis.

Vilhar B, Vidic T, Jogan N, Dermastia M. Genome size and the nucleolar number as estimators of ploidy level in Dactylis glomerata in the Slovenian Alps. Plant Systematics and Evolution. 2002;234:1–13.

Vizintin L, Javornik B, Bohanec B. Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Science. 2006;170:859–866.

Voglmayr H. Nuclear DNA amounts in mosses (Musci) Annals of Botany. 2000;85:531–546.

Ward JH. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association. 1963;58:236–244.

Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM. Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. American Journal of Botany. 2006;93:148–156. PubMed

Westhoff V, van der Maarel E. The Braun–Blanquet approach. In: Whittaker RH, editor. Classification of plant communities. The Hague: D. W. Junk; 1978. pp. 287–399.

Zoldoš V, Papeš D, Brown SC, Šiljak-Yakovev S. Genome size and base composition of seven Quercus species: inter- and intrapopulation variation. Genome. 1998;41:162–168.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace