The cell cycle of Chlamydomonas reinhardtii: the role of the commitment point
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17571796
DOI
10.1007/bf02932138
Knihovny.cz E-zdroje
- MeSH
- buněčné dělení MeSH
- buněčný cyklus fyziologie MeSH
- časové faktory MeSH
- Chlamydomonas reinhardtii cytologie růst a vývoj fyziologie MeSH
- replikace DNA MeSH
- světlo MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chlamydomonas reinhardtii cells can double their size several times during the light period before they enter the division phase. To explain the role of the commitment point (defined as the moment in the cell cycle after which cells can complete the cell cycle independently of light) and the moment of initiation of cell division we investigated whether the timing of commitment to cell division and cell division itself are dependent upon cell size or if they are under control of a timer mechanism that measures a period of constant duration. The time point at which cells attain commitment to cell division was dependent on the growth rate and coincided with the moment at which cells have approximately doubled in size. The timing of cell division was temperature-dependent and took place after a period of constant duration from the onset of the light period, irrespective of the light intensity and timing of the commitment point. We concluded that at the commitment point all the prerequisites are checked, which is required for progression through the cell cycle; the commitment point is not the moment at which cell division is initiated but it functions as a checkpoint, which ensures that cells have passed the minimum cell size required for the cell division.
Zobrazit více v PubMed
Planta. 1987 Dec;172(4):463-72 PubMed
Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665-9 PubMed
Biochem Biophys Res Commun. 2003 Jul 11;306(4):1042-9 PubMed
J Cell Biol. 1995 May;129(4):1061-9 PubMed
Proc Natl Acad Sci U S A. 1960 Jan;46(1):83-91 PubMed
Plant Physiol. 1992 Aug;99(4):1370-5 PubMed
Genes Dev. 2001 Jul 1;15(13):1652-61 PubMed
Plant Biol (Stuttg). 2004 Nov;6(6):689-95 PubMed
Folia Microbiol (Praha). 2005;50(2):141-9 PubMed
J Cell Biol. 1980 Apr;85(1):136-45 PubMed
Nature. 1983 Aug 18-24;304(5927):630-3 PubMed
Plant Cell. 1989 Dec;1(12):1185-93 PubMed
Plant Physiol. 2005 Feb;137(2):475-91 PubMed