A multivariate extension of the gene set enrichment analysis
Jazyk angličtina Země Singapur Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
K99LM009477
NLM NIH HHS - United States
R01 GM075299
NIGMS NIH HHS - United States
R21 GM079259
NIGMS NIH HHS - United States
PubMed
17933015
DOI
10.1142/s0219720007003041
PII: S0219720007003041
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- modely genetické MeSH
- multivariační analýza MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů statistika a číselné údaje MeSH
- stanovení celkové genové exprese statistika a číselné údaje MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
A test-statistic typically employed in the gene set enrichment analysis (GSEA) prevents this method from being genuinely multivariate. In particular, this statistic is insensitive to changes in the correlation structure of the gene sets of interest. The present paper considers the utility of an alternative test-statistic in designing the confirmatory component of the GSEA. This statistic is based on a pertinent distance between joint distributions of expression levels of genes included in the set of interest. The null distribution of the proposed test-statistic, known as the multivariate N-statistic, is obtained by permuting group labels. Our simulation studies and analysis of biological data confirm the conjecture that the N-statistic is a much better choice for multivariate significance testing within the framework of the GSEA. We also discuss some other aspects of the GSEA paradigm and suggest new avenues for future research.
Citace poskytuje Crossref.org