Regularization techniques in realistic Laplacian computation

. 2007 Nov ; 54 (11) : 1993-9.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18018694

This paper explores regularization options for the ill-posed spline coefficient equations in the realistic Laplacian computation. We investigate the use of the Tikhonov regularization, truncated singular value decomposition, and the so-called lambda-correction with the regularization parameter chosen by the L-curve, generalized cross-validation, quasi-optimality, and the discrepancy principle criteria. The provided range of regularization techniques is much wider than in the previous works. The improvement of the realistic Laplacian is investigated by simulations on the three-shell spherical head model. The conclusion is that the best performance is provided by the combination of the Tikhonov regularization and the generalized cross-validation criterion-a combination that has never been suggested for this task before.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...