Regularization techniques in realistic Laplacian computation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18018694
DOI
10.1109/tbme.2007.893496
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- diagnóza počítačová metody MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- mapování mozku metody MeSH
- modely neurologické * MeSH
- mozek fyziologie MeSH
- počítačová simulace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper explores regularization options for the ill-posed spline coefficient equations in the realistic Laplacian computation. We investigate the use of the Tikhonov regularization, truncated singular value decomposition, and the so-called lambda-correction with the regularization parameter chosen by the L-curve, generalized cross-validation, quasi-optimality, and the discrepancy principle criteria. The provided range of regularization techniques is much wider than in the previous works. The improvement of the realistic Laplacian is investigated by simulations on the three-shell spherical head model. The conclusion is that the best performance is provided by the combination of the Tikhonov regularization and the generalized cross-validation criterion-a combination that has never been suggested for this task before.
Citace poskytuje Crossref.org