Energy transfer in the peridinin-chlorophyll protein complex reconstituted with mixed chlorophyll sites
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18192358
PubMed Central
PMC2275708
DOI
10.1529/biophysj.107.123430
PII: S0006-3495(08)70476-4
Knihovny.cz E-zdroje
- MeSH
- chemické modely * MeSH
- chlorofyl chemie účinky záření MeSH
- dávka záření MeSH
- karotenoidy chemie účinky záření MeSH
- počítačová simulace MeSH
- přenos energie účinky záření MeSH
- světlo MeSH
- vazba proteinů účinky záření MeSH
- vazebná místa účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- karotenoidy MeSH
- peridinin MeSH Prohlížeč
We use femtosecond transient absorption spectroscopy to study chlorophyll (Chl)-Chl energy transfer in the peridinin-chlorophyll protein (PCP) reconstituted with mixtures of either chlorophyll b (Chlb) and Chld or Chla and bacteriochlorophyll a (BChla). Analysis of absorption and transient absorption spectra demonstrated that reconstitution with chlorophyll mixtures produces a significant fraction of PCP complexes that contains a different Chl in each domain of the PCP monomer. The data also suggest that binding affinity of Chla is less than that of the other three Chl species. By exciting the Chl species lying at higher energy, we obtained energy transfer times of 40 +/- 5 ps (Chlb-Chld) and 59 +/- 3 ps (Chla-BChla). The experimental values match those obtained from the Förster equation, 36 and 50 ps, respectively, showing that energy transfer proceeds via the Förster mechanism. Excitation of peridinin in the PCP complex reconstituted with Chla/BChla mixture provided time constants of 2.6 and 0.4 ps for the peridinin-Chla and peridinin-BChla energy transfer, matching those obtained from studies of PCP complexes reconstituted with single chlorophyll species.
Zobrazit více v PubMed
Green, R. B., and W. W. Parson, editors. 2003. Light-Harvesting Antennas in Photosynthesis. Kluwer, Dordrecht, The Netherlands.
MacColl, R., and D. Guard-Friar. 1987. Phycobiliproteins. CRC Press, Boca Raton.
Polívka, T., and V. Sundström. 2004. Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem. Rev. 104:2021–2071. PubMed
Sundström, V., T. Pullerits, and R. van Grondelle. 1997. Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B. 103:2327–2346.
Ritz, T., A. Damjanovic, K. Schulten, J. P. Zhang, and Y. Koyama. 2000. Efficient light harvesting through carotenoids. Photosynth. Res. 66:125–144. PubMed
van Amerongen, H., and R. van Grondelle. 2001. Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J. Phys. Chem. B. 105:604–617.
Bautista, J. A., R. G. Hiller, F. P. Sharples, D. Gosztola, M. R. Wasielewski, and H. A. Frank. 1999. Singlet and triplet energy transfer in the peridinin-chlorophyll a protein from Amphidinium carterae. J. Phys. Chem. A. 103:2267–2273.
Polívka, T., R. G. Hiller, and H. A. Frank. 2007. Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae. Arch. Biochem. Biophys. 458:111–120. PubMed
Hofmann, E., P. M. Wrench, F. P. Sharples, R. G. Hiller, W. Welte, and K. Diederichs. 1996. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science. 272:1788–1791. PubMed
Krueger, B. P., S. S. Lampoura, I. H. M. van Stokkum, E. Papagiannakis, J. M. Salverda, C. C. Gradinaru, D. Rutkauskas, R. G. Hiller, and R. van Grondelle. 2001. Energy transfer in the peridinin chlorophyll—a protein of Amphidinium carterae studied by polarized transient absorption and target analysis. Biophys. J. 80:2843–2855. PubMed PMC
Zigmantas, D., R. G. Hiller, V. Sundstrom, and T. Polívka. 2002. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proc. Natl. Acad. Sci. USA. 99:16760–16765. PubMed PMC
Linden, P. A., J. Zimmermann, T. Brixner, N. E. Holt, H. M. Vaswani, R. G. Hiller, and G. R. Fleming. 2004. Transient absorption study of peridinin and peridinin-chlorophyll-a-protein after two photon excitation. J. Phys. Chem. B. 108:10340–10345.
Bautista, J. A., R. E. Connors, B. B. Raju, R. G. Hiller, F. P. Sharples, D. Gosztola, M. R. Wasielewski, and H. A. Frank. 1999. Excited state properties of peridinin: observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids. J. Phys. Chem. B. 103:8751–8758.
Frank, H. A., J. A. Bautista, J. Josue, Z. Pendon, R. G. Hiller, F. P. Sharples, D. Gosztola, and M. R. Wasielewski. 2000. Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J. Phys. Chem. B. 104:4569–4577.
Zigmantas, D. R. G., F. P. Hiller, H. A. Sharples, V. Frank, V. Sundström, and T. Polívka. 2004. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 6:3009–3016.
Vaswani, H. M., C. P. Hsu, M. Head-Gordon, and G. R. Fleming. 2003. Quantum chemical evidence for an intramolecular charge-transfer state in the carotenoid peridinin of peridinin-chlorophyll-protein. J. Phys. Chem. B. 107:7940–7946.
Shima, S., R. P. Ilagan, N. Gillespie, B. J. Sommer, R. G. Hiller, F. P. Sharples, H. A. Frank, and R. R. Birge. 2003. Two-photon and fluorescence spectroscopy and the effect of environment on the photochemical properties of peridinin in solution and in the peridinin-chlorophyll-protein from Amphidinium carterae. J. Phys. Chem. B. 107:8052–8066.
Papagiannakis, E., D. S. Larsen, I. H. M. van Stokkum, M. Vengris, R. G. Hiller, and R. van Grondelle. 2004. Resolving the excited state equilibrium of peridinin in solution. Biochemistry. 43:15303–15309. PubMed
Polívka, T., T. Pascher, V. Sundström, and R. G. Hiller. 2005. Tuning energy transfer in the peridinin-chlorophyll complex by reconstitution with different chlorophylls. Photosynth. Res. 86:217–227. PubMed
Polívka, T., I. H. M. van Stokkum, D. Zigmantas, R. van Grondelle, V. Sundström, and R. G. Hiller. 2006. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae. Biochemistry. 45:8516–8526. PubMed
Papagiannakis, E., I. H. M. van Stokkum, H. Fey, C. Büchel, and R. van Grondelle. 2005. Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynth. Res. 86:241–250. PubMed
Polívka, T., M. Pellnor, E. Melo, T. Pascher, V. Sundström, A. Osuka, and K. R. Naqvi. 2007. Polarity-tuned energy transfer efficiency in artificial light-harvesting antennae containing carbonyl carotenoids peridinin and fucoxanthin. J. Phys. Chem. C. 111:467–476.
Krikunova, M., H. Lokstein, D. Leupold, R. G. Hiller, and B. Voigt. 2006. Pigment-pigment interactions in PCP of Amphidinium carterae investigated by nonlinear polarization spectroscopy in the frequency domain. Biophys. J. 90:261–271. PubMed PMC
Wörmke, S., S. Mackowski, T. H. P. Brotosudarmo, C. Jung, A. Zumbusch, M. Ehrl, H. Scheer, E. Hofmann, R. G. Hiller, and C. Bräuchle. 2007. Monitoring fluorescence of individual chromophores in peridinin-chlorophyll-protein complex using single molecule spectroscopy. Biochim. Biophys. Acta. 1767:956–964. PubMed
Kleima, F. J., E. Hofmann, B. Gobets, I. H. M. van Stokkum, R. van Grondelle, K. Diederichs, and H. van Amerongen. 2000. Förster excitation energy transfer in peridinin-chlorophyll-a-protein. Biophys. J. 78:344–353. PubMed PMC
Ilagan, R. P., S. Shima, A. Melkozernov, S. Lin, R. E. Blankenship, F. P. Sharples, R. G. Hiller, R. R. Birge, and H. A. Frank. 2004. Spectroscopic properties of the main-form and high-salt peridinin-chlorophyll a proteins from Amphidinium carterae. Biochemistry. 43:1478–1487. PubMed
Ilagan, R. P., J. F. Koscielecki, R. G. Hiller, F. P. Sharples, G. N. Gibson, R. R. Birge, and H. A. Frank. 2006. Femtosecond time-resolved absorption spectroscopy of main-form and high-salt peridinin-chlorophyll-a proteins at low temperatures. Biochemistry. 45:14052–14063. PubMed
Reference deleted in proof.
Bandilla, M., B. Ucker, M. Ram, I. Simonin, E. Gelhaye, G. McDermott, R. J. Cogdell, and H. Scheer. 1998. Reconstitution of the B800 bacteriochlorophylls in the peripheral light harvesting complex B800–850 of Rhodobacter sphaeroides 2.4.1. with BChl a and modified (bacterio)chlorophylls. Biochim. Biophys. Acta. 1364:390–402. PubMed
Herek, J. L., N. J. Fraser, T. Pullerits, P. Martinsson, T. Polívka, H. Scheer, R. J. Cogdell, and V. Sundström. 2000. Mechanism of B800–B850 energy transfer in native and modified LH2 complexes of Rps. acidophila 10050. Biophys. J. 78:2590–2596. PubMed PMC
Paulsen, H. 2006. Reconstitution and pigment exchange. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. B. Grimm, R. J. Porra, W. Rüdiger, and H. Scheer, editors. Springer, Dordrecht, The Netherlands. 375–385.
Miller, D. J., J. Catmull, R. Puskeiler, H. Tweedale, F. P. Sharples, and R. G. Hiller. 2005. Reconstitution of the peridinin chlorophyll a protein (PCP): evidence for functional flexibility in chlorophyll binding. Photosynth. Res. 86:229–240. PubMed
Ilagan, R. P., T. W. Chapp, R. G. Hiller, F. P. Sharples, T. Polívka, and H. A. Frank. 2006. Optical spectroscopic studies of light-harvesting by pigment-reconstituted peridinin-chlorophyll-proteins at cryogenic temperatures. Photosynth. Res. 90:5–15. PubMed PMC
Brotosudarmo, T. H. P., E. Hofmann, R. G. Hiller, S. Wörmke, S. Mackowski, A. Zumbusch, C. Bräuchle, and H. Scheer. 2006. Peridinin-chlorophyll-protein reconstituted with chlorophyll mixtures: preparation, bulk and single molecule spectroscopy. FEBS Lett. 580:5257–5262. PubMed
Mackowski, S., S. Wörmke, T. H. P. Brotosudarmo, C. Jung, R. G. Hiller, H. Scheer, and C. Bräuchle. 2007. Energy transfer in reconstituted peridinin-chlorophyll protein complexes: ensemble and single molecule spectroscopy studies. Biophys. J. 93:3249–3258. PubMed PMC
van Stokkum, I. H. M., D. S. Larsen, and R. van Grondelle. 2004. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta. 1657:82–104. PubMed
Koka, P., and P. S. Song. 1977. Chromophore topography and binding environment of peridinin-chlorophyll-a protein complexes from marine dinoflagellate algae. Biochim. Biophys. Acta. 495:220–231. PubMed
Mackowski, S., S. Wörmke, T. H. P. Brotosudarmo, H. Scheer, and C. Bräuchle. 2008. Fluorescence spectroscopy of reconstituted peridinin-chlorophyll protein complexes. Photosynth. Res. 95:253–260. PubMed
Brotosudarmo, T. H. P., S. Mackowski, E. Hofmann, R. G. Hiller, C. Bräuchle, and H. Scheer. 2008. Relative binding affinities of chlorophylls in peridinin-chlorophyll-protein reconstituted with heterochlorophyllous mixtures. Photosynth. Res. 95:247–252. PubMed
Pullerits, T., S. Hess, J. L. Herek, and V. Sundström. 1997. Temperature dependence of excitation transfer in LH2 of Rhodobacter sphaeroides. J. Phys. Chem. B. 101:10560–10567.
Kleima, F. J., M. Wendling, E. Hofman, E. J. G. Peterman, R. van Grondelle, and H. van Amerongen. 2000. Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. Biochemistry. 39:5184–5195. PubMed
Gilbert, A., and J. Baggott. 1991. Essentials of Molecular Photochemistry. Blackwell Science. Oxford.
van Zandvoort, M. A. M. J., D. Wrobel, P. Lettinga, G. van Ginkel, and Y. K. Levine. 1995. The orientation of the transition dipole moments of chlorophyll a and pheophytin a in their molecular frame. Photochem. Photobiol. 62:299–308.
Jang, S., M. D. Newton, and R. J. Silbey. 2007. Multichromophoric Förster resonance energy transfer from B800 to B850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria. J. Phys. Chem. B. 111:6807–6814. PubMed
Kimura, A., and T. Kakitani. 2003. Theory of excitation energy transfer in the intermediate coupling case of clusters. J. Phys. Chem. B. 107:14486–14499.
Kobayashi, M., M. Akiyama, H. Kano, and H. Kise. 2006. Spectroscopy and structure determination. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. B. Grimm, R. J. Porra, W. Rüdiger, and H. Scheer, editors. Springer, Dordrecht, The Netherlands. 79–94.