Francisella tularensis strain LVS resides in MHC II-positive autophagic vacuoles in macrophages
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
18450226
DOI
10.1007/bf02932193
Knihovny.cz E-resources
- MeSH
- Autophagy * MeSH
- Cell Line MeSH
- Microscopy, Fluorescence MeSH
- PTEN Phosphohydrolase analysis MeSH
- Francisella tularensis immunology MeSH
- Cathepsin D analysis MeSH
- Microscopy, Confocal MeSH
- Macrophages microbiology MeSH
- Histocompatibility Antigens Class II analysis MeSH
- Mice MeSH
- Tumor Suppressor Protein p53 analysis MeSH
- Microtubule-Associated Proteins analysis MeSH
- Vacuoles chemistry microbiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- PTEN Phosphohydrolase MeSH
- Cathepsin D MeSH
- Map1lc3b protein, mouse MeSH Browser
- Histocompatibility Antigens Class II MeSH
- Tumor Suppressor Protein p53 MeSH
- Microtubule-Associated Proteins MeSH
- Pten protein, mouse MeSH Browser
The Francisella tularensis strain LVS phagosome disintegrates during the first few hours after bacterial entry and microbes are released to the cytosol. Within 12 h both rapid multiplication of microbes and a steep increase of apoptosis of infected macrophages occur. We searched for signals involved in the death of macrophages and detected molecules associated with the autophagy machinery cathepsin D, PTEN, p53 and LC3, whose levels or modification were influenced by ongoing in vitro tularemic infection. The sequestration of cytoplasmic F. tularensis LVS into autophagosomes was confirmed by co-localization of the LVS strain containing vacuoles with LC3 (an autophagosomal marker). We also demonstrated the presence of MHC II antigens in these autophagosomes, indicating that they might act as a source of endogenous tularemic antigens for presentation to CD4+ T lymphocytes.
See more in PubMed
Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):6031-6 PubMed
J Biol Chem. 2001 Sep 21;276(38):35243-6 PubMed
Mol Cell. 2001 Aug;8(2):317-25 PubMed
Infect Immun. 2005 Sep;73(9):5892-902 PubMed
Science. 2005 Feb 4;307(5710):727-31 PubMed
Arch Histol Cytol. 2001 Aug;64(3):233-46 PubMed
Infect Immun. 2003 Oct;71(10):5940-50 PubMed
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8204-9 PubMed
Trends Immunol. 2005 Oct;26(10):523-8 PubMed
Science. 2004 Nov 5;306(5698):1037-40 PubMed
Cell Microbiol. 2005 Jun;7(6):765-78 PubMed
Cancer Res. 2006 Jan 15;66(2):736-42 PubMed
Cell Microbiol. 2005 Jul;7(7):981-93 PubMed
Hum Mol Genet. 2003 Dec 15;12(24):3231-44 PubMed
J Cell Biol. 2003 Dec 8;163(5):1123-31 PubMed
Cell Microbiol. 2003 Jul;5(7):455-68 PubMed
J Biol Chem. 2003 May 9;278(19):16667-74 PubMed
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14578-83 PubMed
Microbes Infect. 2005 Apr;7(4):619-25 PubMed
Infect Immun. 2004 Aug;72(8):4751-62 PubMed
Oncogene. 2004 Apr 12;23(16):2891-906 PubMed
Nat Rev Microbiol. 2004 Apr;2(4):301-14 PubMed
J Biol Chem. 2006 Apr 21;281(16):11374-83 PubMed
J Immunol. 2005 Nov 15;175(10):6792-801 PubMed
Infect Immun. 2003 Aug;71(8):4642-6 PubMed
Cell Microbiol. 2006 Jun;8(6):891-8 PubMed
Infect Immun. 2001 Sep;69(9):5698-708 PubMed
Modified activities of macrophages' deubiquitinating enzymes after Francisella infection
Early infection-induced natural antibody response
Innate Immune Recognition: An Issue More Complex Than Expected