Visualization of symbiotic tissue in intact root nodules of Vicia tetrasperma using GFP-marked Rhizobium leguminosarum bv. viciae

. 2008 ; 53 (2) : 139-46. [epub] 20080525

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18500633

In rhizobial symbiosis with legume plant hosts, the symbiotic tissue in the root nodules of indeterminate type is localized to the basal part of the nodule where the symbiotic zones contain infected cells (IC) interspersed with uninfected cells (UC) that are devoid of rhizobia. Although IC are easily distinguished in nodule sections using standard histochemical techniques, their observation in intact nodules is hampered by nodule tissue characteristics. Tagging of Rhizobium leguminosarum bv. viciae strain 128C30 with a constitutively expressed gene for green fluorescent protein (nonshifted mutant form cycle3) in combination with the advantages of the tiny nodules formed by Vicia tetrasperma (L.) SCHREB . allowed for vital observation of symbiotic tissue using fluorescence microscopy. Separation of a red-shifted background channel and digital image stacking along z-axis enabled us to construct a nodule image in a classical fluorescence microscopy of nodules exceeding 1 mm in diameter. In parallel, visualization of nodule bacteria inside the symbiotic tissue by confocal microscopy at the excitation wavelength 488 nm clearly distinguished IC/UC pattern in the nodule virtual sections and revealed red-shifted fluorescence of nonrhizobial origin. This signal was located on the periphery of IC and increased with their degradation, thus suggesting accumulation of secondary metabolites, presumably flavonoids. The simultaneous detection of bacteria and secondary metabolites can be used for monitoring changes to intact nodule physiology in the model legumes. The advantage of V. tetrasperma as a suggested laboratory model for pea cross-inoculation group has been demonstrated.

Zobrazit více v PubMed

Mol Microbiol. 1999 May;32(4):837-49 PubMed

Trends Biochem Sci. 1995 Nov;20(11):448-55 PubMed

Microb Ecol. 2001 Feb;41(4):325-332 PubMed

Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648-52 PubMed

Plant Physiol. 1988 Apr;86(4):1298-303 PubMed

Mol Plant Microbe Interact. 2000 Nov;13(11):1163-9 PubMed

Ann Bot. 2002 Apr;89(4):357-66 PubMed

Plant Cell. 1990 Aug;2(8):687-700 PubMed

Plant Cell. 1990 Dec;2(12):1157-1170 PubMed

Plant Mol Biol. 1992 May;19(1):89-107 PubMed

Science. 1997 Jan 24;275(5299):527-30 PubMed

J Exp Bot. 2002 Aug;53(375):1735-45 PubMed

J Bacteriol. 1996 Dec;178(24):7159-66 PubMed

J Bacteriol. 1990 Nov;172(11):6557-67 PubMed

Folia Microbiol (Praha). 2005;50(4):323-31 PubMed

Nat Biotechnol. 1996 Mar;14(3):315-9 PubMed

Appl Environ Microbiol. 1987 Oct;53(10):2539-43 PubMed

Physiol Plant. 2004 Apr;120(4):546-555 PubMed

Plant Mol Biol. 1991 May;16(5):841-52 PubMed

Mol Plant Microbe Interact. 2001 Apr;14(4):471-6 PubMed

J Microbiol Methods. 1999 Feb;35(1):85-92 PubMed

J Bacteriol. 1985 Jul;163(1):21-6 PubMed

Genes Dev. 1990 Mar;4(3):344-56 PubMed

Annu Rev Microbiol. 2000;54:257-88 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...