Visualization of symbiotic tissue in intact root nodules of Vicia tetrasperma using GFP-marked Rhizobium leguminosarum bv. viciae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- fluorescenční mikroskopie MeSH
- kořenové hlízky rostlin chemie mikrobiologie fyziologie MeSH
- půdní mikrobiologie * MeSH
- Rhizobium leguminosarum chemie cytologie genetika fyziologie MeSH
- symbióza * MeSH
- vikev chemie cytologie mikrobiologie fyziologie MeSH
- zelené fluorescenční proteiny analýza genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zelené fluorescenční proteiny MeSH
In rhizobial symbiosis with legume plant hosts, the symbiotic tissue in the root nodules of indeterminate type is localized to the basal part of the nodule where the symbiotic zones contain infected cells (IC) interspersed with uninfected cells (UC) that are devoid of rhizobia. Although IC are easily distinguished in nodule sections using standard histochemical techniques, their observation in intact nodules is hampered by nodule tissue characteristics. Tagging of Rhizobium leguminosarum bv. viciae strain 128C30 with a constitutively expressed gene for green fluorescent protein (nonshifted mutant form cycle3) in combination with the advantages of the tiny nodules formed by Vicia tetrasperma (L.) SCHREB . allowed for vital observation of symbiotic tissue using fluorescence microscopy. Separation of a red-shifted background channel and digital image stacking along z-axis enabled us to construct a nodule image in a classical fluorescence microscopy of nodules exceeding 1 mm in diameter. In parallel, visualization of nodule bacteria inside the symbiotic tissue by confocal microscopy at the excitation wavelength 488 nm clearly distinguished IC/UC pattern in the nodule virtual sections and revealed red-shifted fluorescence of nonrhizobial origin. This signal was located on the periphery of IC and increased with their degradation, thus suggesting accumulation of secondary metabolites, presumably flavonoids. The simultaneous detection of bacteria and secondary metabolites can be used for monitoring changes to intact nodule physiology in the model legumes. The advantage of V. tetrasperma as a suggested laboratory model for pea cross-inoculation group has been demonstrated.
Zobrazit více v PubMed
Mol Microbiol. 1999 May;32(4):837-49 PubMed
Trends Biochem Sci. 1995 Nov;20(11):448-55 PubMed
Microb Ecol. 2001 Feb;41(4):325-332 PubMed
Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648-52 PubMed
Plant Physiol. 1988 Apr;86(4):1298-303 PubMed
Mol Plant Microbe Interact. 2000 Nov;13(11):1163-9 PubMed
Ann Bot. 2002 Apr;89(4):357-66 PubMed
Plant Cell. 1990 Aug;2(8):687-700 PubMed
Plant Cell. 1990 Dec;2(12):1157-1170 PubMed
Plant Mol Biol. 1992 May;19(1):89-107 PubMed
Science. 1997 Jan 24;275(5299):527-30 PubMed
J Exp Bot. 2002 Aug;53(375):1735-45 PubMed
J Bacteriol. 1996 Dec;178(24):7159-66 PubMed
J Bacteriol. 1990 Nov;172(11):6557-67 PubMed
Folia Microbiol (Praha). 2005;50(4):323-31 PubMed
Nat Biotechnol. 1996 Mar;14(3):315-9 PubMed
Appl Environ Microbiol. 1987 Oct;53(10):2539-43 PubMed
Physiol Plant. 2004 Apr;120(4):546-555 PubMed
Plant Mol Biol. 1991 May;16(5):841-52 PubMed
Mol Plant Microbe Interact. 2001 Apr;14(4):471-6 PubMed
J Microbiol Methods. 1999 Feb;35(1):85-92 PubMed
J Bacteriol. 1985 Jul;163(1):21-6 PubMed
Genes Dev. 1990 Mar;4(3):344-56 PubMed
Annu Rev Microbiol. 2000;54:257-88 PubMed