Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
18510725
PubMed Central
PMC2481497
DOI
10.1186/bcr2101
PII: bcr2101
Knihovny.cz E-resources
- MeSH
- Models, Biological MeSH
- Protein Array Analysis methods MeSH
- Molecular Diagnostic Techniques MeSH
- DNA, Complementary metabolism MeSH
- Humans MeSH
- Biomarkers, Tumor MeSH
- Breast Neoplasms genetics metabolism MeSH
- Protein Processing, Post-Translational MeSH
- Proteomics methods MeSH
- Gene Expression Regulation * MeSH
- Cluster Analysis MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Gene Expression Profiling MeSH
- Computational Biology methods MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Complementary MeSH
- Biomarkers, Tumor MeSH
INTRODUCTION: Microarray-based gene expression profiling represents a major breakthrough for understanding the molecular complexity of breast cancer. cDNA expression profiles cannot detect changes in activities that arise from post-translational modifications, however, and therefore do not provide a complete picture of all biologically important changes that occur in tumors. Additional opportunities to identify and/or validate molecular signatures of breast carcinomas are provided by proteomic approaches. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) offers high-throughput protein profiling, leading to extraction of protein array data, calling for effective and appropriate use of bioinformatics and statistical tools. METHODS: Whole tissue lysates of 105 breast carcinomas were analyzed on IMAC 30 ProteinChip Arrays (Bio-Rad, Hercules, CA, USA) using the ProteinChip Reader Model PBS IIc (Bio-Rad) and Ciphergen ProteinChip software (Bio-Rad, Hercules, CA, USA). Cluster analysis of protein spectra was performed to identify protein patterns potentially related to established clinicopathological variables and/or tumor markers. RESULTS: Unsupervised hierarchical clustering of 130 peaks detected in spectra from breast cancer tissue lysates provided six clusters of peaks and five groups of patients differing significantly in tumor type, nuclear grade, presence of hormonal receptors, mucin 1 and cytokeratin 5/6 or cytokeratin 14. These tumor groups resembled closely luminal types A and B, basal and HER2-like carcinomas. CONCLUSION: Our results show similar clustering of tumors to those provided by cDNA expression profiles of breast carcinomas. This fact testifies the validity of the SELDI-TOF MS proteomic approach in such a type of study. As SELDI-TOF MS provides different information from cDNA expression profiles, the results suggest the technique's potential to supplement and expand our knowledge of breast cancer, to identify novel biomarkers and to produce clinically useful classifications of breast carcinomas.
See more in PubMed
Sotiriou C, Desmedt C. Gene expression profiling in breast cancer. Ann Oncol. 2006;17(Suppl 10):x259–x262. doi: 10.1093/annonc/mdl270. PubMed DOI
Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005;23:7350–7360. doi: 10.1200/JCO.2005.03.3845. PubMed DOI
Vijver MJ van de, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, Velde T van der, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009. doi: 10.1056/NEJMoa021967. PubMed DOI
Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 2003;100:10393–10398. doi: 10.1073/pnas.1732912100. PubMed DOI PMC
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Rijn M van de, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lønning P, Børresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–10874. doi: 10.1073/pnas.191367098. PubMed DOI PMC
Rakha EA, El-Sayed ME, Green AR, Paish EC, Lee AH, Ellis IO. Breast carcinoma with basal differentiation: a proposal for pathology definition based on basal cytokeratin expression. Histopathology. 2007;50:434–438. doi: 10.1111/j.1365-2559.2007.02638.x. PubMed DOI
Modlich O, Prisack HB, Munnes M, Audretsch W, Bojar H. Predictors of primary breast cancers responsiveness to preoperative epirubicin/cyclophosphamide-based chemotherapy: translation of microarray data into clinically useful predictive signatures. J Transl Med. 2005;3:32. doi: 10.1186/1479-5876-3-32. PubMed DOI PMC
Jansen MP, Foekens JA, van Staveren IL, Dirkzwager-Kiel MM, Ritstier K, Look MP, Meijer-van Gelder ME, Sieuwerts AM, Portengen H, Dorssers LC, Klijn JG, Berns EM. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol. 2005;23:732–740. doi: 10.1200/JCO.2005.05.145. PubMed DOI
Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JF, Macmillan D, Blamey RW, Ellis IO. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer. 2005;116:340–350. doi: 10.1002/ijc.21004. PubMed DOI
Makretsov NA, Huntsman DG, Nielsen TO, Yorida E, Peacock M, Cheang MC, Dunn SE, Hayes M, Rijn M van de, Bajdik C, Gilks CB. Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin Cancer Res. 2004;10:6143–6151. doi: 10.1158/1078-0432.CCR-04-0429. PubMed DOI
William Hutchens T-TY. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993;7:576–580. doi: 10.1002/rcm.1290070703. DOI
Bensmail H, Haoudi A. Postgenomics: proteomics and bioinformatics in cancer research. J Biomed Biotechnol. 2003;2003(4):217–230. doi: 10.1155/S1110724303209207. PubMed DOI PMC
Krieg RC, Fogt F, Braunschweig T, Herrmann PC, Wollscheidt V, Wellmann A. ProteinChip array analysis of microdissected colorectal carcinoma and associated tumor stroma shows specific protein bands in the 3.4 to 3.6 kDa range. Anticancer Res. 2004;24:1791–1796. PubMed
Sauter ER, Shan S, Hewett JE, Speckman P, Du Bois GC. Proteomic analysis of nipple aspirate fluid using SELDI-TOF-MS. Int J Cancer. 2005;114:791–796. doi: 10.1002/ijc.20742. PubMed DOI
Li J, Orlandi R, White CN, Rosenzweig J, Zhao J, Seregni E, Morelli D, Yu Y, Meng XY, Zhang Z, Davidson NE, Fung ET, Chan DW. Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin Chem. 2005;51:2229–2235. doi: 10.1373/clinchem.2005.052878. PubMed DOI
Mendrinos S, Nolen JD, Styblo T, Carlson G, Pohl J, Lewis M, Ritchie J. Cytologic findings and protein expression profiles associated with ductal carcinoma of the breast in ductal lavage specimens using surface-enhanced laser desorption and ionization-time of flight mass spectrometry. Cancer. 2005;105:178–183. doi: 10.1002/cncr.21052. PubMed DOI
Nakagawa T, Huang SK, Martinez SR, Tran AN, Elashoff D, Ye X, Turner RR, Giuliano AE, Hoon DS. Proteomic profiling of primary breast cancer predicts axillary lymph node metastasis. Cancer Res. 2006;66:11825–11830. doi: 10.1158/0008-5472.CAN-06-2337. PubMed DOI
Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359:572–577. doi: 10.1016/S0140-6736(02)07746-2. PubMed DOI
Paweletz CP, Trock B, Pennanen M, Tsangaris T, Magnant C, Liotta LA, Petricoin EF., 3rd Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers. 2001;17:301–307. PubMed PMC
Li J, Zhao J, Yu X, Lange J, Kuerer H, Krishnamurthy S, Schilling E, Khan SA, Sukumar S, Chan DW. Identification of biomarkers for breast cancer in nipple aspiration and ductal lavage fluid. Clin Cancer Res. 2005;11:8312–8320. doi: 10.1158/1078-0432.CCR-05-1538. PubMed DOI
Ricolleau G, Charbonnel C, Lode L, Loussouarn D, Joalland MP, Bogumil R, Jourdain S, Minvielle S, Campone M, Deporte-Fety R, Campion L, Jézéquel P. Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics. 2006;6:1963–1975. doi: 10.1002/pmic.200500283. PubMed DOI
Elston CW, Ellis IO. Assessment of histological grade. In: Elston CW, Ellis IO, editor. The Breast. Vol. 13. Edinburgh: Churchill Livingstone; 1998. pp. 365–384.
Roesch Ely M, Nees M, Karsai S, Magele I, Bogumil R, Vorderwulbecke S, Ruess A, Dietz A, Schnolzer M, Bosch FX. Transcript and proteome analysis reveals reduced expression of calgranulins in head and neck squamous cell carcinoma. Eur J Cell Biol. 2005;84:431–444. doi: 10.1016/j.ejcb.2005.01.003. PubMed DOI
Ward JH. Hierarchical grouping to optimize an objective function. J Am Statist Assoc. 1963;58:236–244. doi: 10.2307/2282967. DOI
Moshkovskii SA, Serebryakova MV, Kuteykin-Teplyakov KB, Tikhonova OV, Goufman EI, Zgoda VG, Taranets IN, Makarov OV, Archakov AI. Ovarian cancer marker of 11.7 kDa detected by proteomics is a serum amyloid A1. Proteomics. 2005;5:3790–3797. doi: 10.1002/pmic.200401205. PubMed DOI
Schagger H. Tricine-SDS-PAGE. Nat Protocol. 2006;1:16–22. doi: 10.1038/nprot.2006.4. PubMed DOI
Havlasova J, Hernychova L, Brychta M, Hubalek M, Lenco J, Larsson P, Lundqvist M, Forsman M, Krocova Z, Stulik J, Macela A. Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics. 2005;5:2090–2103. doi: 10.1002/pmic.200401123. PubMed DOI
Perou CM, Sorlie T, Eisen MB, Rijn M van de, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi: 10.1038/35021093. PubMed DOI
Mischak H, Apweiler R, Banks RE, Conaway M, Coon J, Dominiczak A, Ehrich JHH, Fliser D, Girolami M, Hermjakob H, Hochstrasser D, Jankowski J. Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteom Clin Appl. 2007;1:148–156. doi: 10.1002/prca.200600771. PubMed DOI
Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103. doi: 10.1379/CSC-99r.1. PubMed DOI PMC
Ciocca DR, Stati AO, Amprino de Castro MM. Colocalization of estrogen and progesterone receptors with an estrogen-regulated heat shock protein in paraffin sections of human breast and endometrial cancer tissue. Breast Cancer Res Treat. 1990;16:243–251. doi: 10.1007/BF01806332. PubMed DOI
Zhang D, Wong LL, Koay ES. Phosphorylation of Ser78 of Hsp27 correlated with HER-2/neu status and lymph node positivity in breast cancer. Mol Cancer. 2007;6:52–60. doi: 10.1186/1476-4598-6-52. PubMed DOI PMC
Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82:331–371. PubMed
Moss SE, Morgan RO. The annexins. Genome Biol. 2004;5:219–226. doi: 10.1186/gb-2004-5-4-219. PubMed DOI PMC