Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
Z01 DK036133
Intramural NIH HHS - United States
PubMed
18616929
PubMed Central
PMC3418689
DOI
10.1016/j.bbrc.2008.06.115
PII: S0006-291X(08)01262-X
Knihovny.cz E-zdroje
- MeSH
- Caenorhabditis elegans genetika metabolismus MeSH
- chromatografie kapalinová metody MeSH
- proteiny Caenorhabditis elegans analýza metabolismus MeSH
- proteom analýza metabolismus MeSH
- proteomika metody MeSH
- receptory cytoplazmatické a nukleární genetika fyziologie MeSH
- vývoj svalů * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- Nhr-40 protein, C elegans MeSH Prohlížeč
- proteiny Caenorhabditis elegans MeSH
- proteom MeSH
- receptory cytoplazmatické a nukleární MeSH
Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.
Zobrazit více v PubMed
Escriva H, Bertrand S, Laudet V. The evolution of the nuclear receptor superfamily. Essays Biochem. 2004;40:11–26. PubMed
Robinson-Rechavi M, Maina CV, Gissendanner CR, Laudet V, Sluder A. Explosive lineage-specific expansion of the orphan nuclear receptor HNF4 in nematodes. J Mol Evol. 2005;60:577–586. PubMed
Maglich JM, Sluder A, Guan X, Shi Y, McKee DD, Carrick K, Kamdar K, Willson TM, Moore JT. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. 2001 RESEARCH0029. Epub 2001 Jul 0024. PubMed PMC
Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D'Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 2003;1:E45. PubMed PMC
King-Jones K, Thummel CS. Nuclear receptors--a perspective from Drosophila. Nat Rev Genet. 2005;6:311–323. PubMed
Ruau D, Duarte J, Ourjdal T, Perriere G, Laudet V, Robinson-Rechavi M, Escriva Garcia H. Update of NUREBASE: nuclear hormone receptor functional genomics The nuclear receptor superfamily. Nucleic Acids Res. 2004;32:D165–D167. PubMed PMC
Sengupta P, Colbert HA, Bargmann CI. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell. 1994;79:971–980. PubMed
Colosimo ME, Tran S, Sengupta P. The divergent orphan nuclear receptor ODR-7 regulates olfactory neuron gene expression via multiple mechanisms in Caenorhabditis elegans. Genetics. 2003;165:1779–1791. PubMed PMC
Van Gilst MR, Hadjivassiliou H, Yamamoto KR. A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc Natl Acad Sci U S A. 2005a;102:13496–13501. PubMed PMC
Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol. 2005b;3:e53. PubMed PMC
Brozova E, Simeckova K, Kostrouch Z, Rall JE, Kostrouchova M. NHR-40, a Caenorhabditis elegans supplementary nuclear receptor, regulates embryonic and early larval development. Mech Dev. 2006;123:689–701. PubMed
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. PubMed PMC
Tabb DL, McDonald WH, Yates JR., 3rd DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res. 2002;1:21–26. PubMed PMC
Simeckova K, Brozova E, Vohanka J, Pohludka M, Kostrouch Z, Krause MW, Rall JE, Kostrouchova M. Supplementary nuclear receptor NHR-60 is required for normal embryonic and early larval development of Caenorhabditis elegans. Folia Biol (Praha) 2007;53:85–96. PubMed
Miller DM, 3rd, Ortiz I, Berliner GC, Epstein HF. Differential localization of two myosins within nematode thick filaments. Cell. 1983;34:477–490. PubMed
Miller DM, Stockdale FE, Karn J. Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986;83:2305–2309. PubMed PMC
Libý P, Kostrouchová M, Pohludka M, Yilma P, Hrabal P, Sikora J, Brožová E, Kostrouchová M, Rall JE, Kostrouch Z. Elevated and deregulated expression of HDAC3 in human astrocytic glial tumors. Folia Biol. (Prague) 2006;52:21–33. PubMed
Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20:3710–3715. PubMed PMC
Waterston RH. The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. Embo J. 1989;8:3429–3436. PubMed PMC
Moerman DG, Williams BD. Sarcomere assembly in C. elegans muscle. WormBook. 2006:1–16. PubMed PMC
Francis GR, Waterston RH. Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. J Cell Biol. 1985;101:1532–1549. PubMed PMC
O'Connell KF, Leys CM, White JG. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics. 1998;149:1303–1321. PubMed PMC
Clark SG, Shurland DL, Meyerowitz EM, Bargmann CI, van der Bliek AM. A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci U S A. 1997;94:10438–10443. PubMed PMC
Hosono R, Kuno S, Midsukami M. Temperature-sensitive mutations causing reversible paralysis in Caenorhabditis elegans. J Exp Zool. 1985;235:409–421. PubMed
Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR. Extending life-span in C. elegans. Science. 2004;305:1238–1239. PubMed
Walker G, Houthoofd K, Vanfleteren JR, Gems D. Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev. 2005;126:929–937. PubMed
LeBoeuf B, Gruninger TR, Garcia LR. Food deprivation attenuates seizures through CaMKII and EAG K+ channels. PLoS Genet. 2007;3:1622–1632. PubMed PMC
Antebi A. Nuclear hormone receptors in C. elegans (Januray 03, 2006) In: The C. elegans Research Community, editor. WormBook. 2006. http://www.wormbook.org. PubMed PMC