Imidazole-based potential Bi- and tridentate nitrogen ligands: synthesis, characterization and application in asymmetric catalysis

. 2008 Sep 25 ; 13 (9) : 2326-39. [epub] 20080925

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18830158

Twelve new imidazole-based potential bi- and tridentate ligands were synthesized and characterized. Whereas in the first series the alpha-amino acid and imidazole moieties were linked by an amino bond, in the second series the tridentate ligands, containing two imidazole groups, were separated by an amide bond. The first series was obtained by the reductive amination of 2-phenylimidazole-4-carboxaldehyde with alpha-amino acid esters. The tridentate ligands were prepared from 2-phenylimidazole-4-carboxylic acid and chiral amines. In the Henry reaction, the amines were revealed as a more reactive species than the less nucleophilic amides, however the enantiomeric excesses were generally poor.

Zobrazit více v PubMed

Corelli F., Summa V., Brogi A., Monteagudo E., Botta M. Chiral azole derivatives. 2.1 Synthesis of enantiomerically pure 1-alkylimidazoles. J. Org. Chem. 1995;60:2008–2015. doi: 10.1021/jo00112a023. DOI

Groarke M., McKervey M. A., Nieuwenhuyzen M. Synthesis of amino acid-derived imidazoles from enantiopure N-protected α-amino glyoxals. Tetrahedron Lett. 2000;41:1275–1278.

Rűther T., Done M.C., Cavell K.J., Peacock E.J., Skelton B.W., White A.H. Novel methylpalladium(II) complexes bearing tridentate imidazole-based chelate ligands: synthesis, structural characterization, and reactivity. Organometallics. 2001;20:5522–5531.

Bureš F., Kulhánek J. Chiral imidazole derivatives synthesis from enantiopure N-protected α-amino acids. Tetrahedron Asymmetry. 2005;16:1347–1354.

Jiang H.-Y., Zhou C.-H., Luo K., Chen H., Lan J.-B., Xie R.-G. Chiral imidazole metalloenzyme models: synthesis and enantioselective hydrolysis for α-amino acid esters. J. Mol. Catal. A: Chem. 2006;260:288–294. doi: 10.1016/j.molcata.2006.07.034. DOI

Matsuoka Y., Ishida Y., Sasaki D., Saigo K. Synthesis of enantiopure 1-substituted, 1,2‒disubstituted, and 1,4,5-trisubstituted imidazoles from 1,2-amino alcohols. Tetrahedron. 2006;62:8199–8206. doi: 10.1016/j.tet.2006.05.079. DOI

Marek A., Kulhánek J., Ludwig M., Bureš F. Facile synthesis of optically active imidazole derivatives. Molecules. 2007;12:1183–1190. doi: 10.3390/12051183. PubMed DOI PMC

Thomas P.J., Axtell A.T., Klosin J., Peng W., Rand C.L., Clark T.P., Landis C.R., Abboud K.A. Asymmetric hydroformylation of vinyl acetate: Application in the synthesis of optically active isoxazolines and imidazoles. Org. Lett. 2007;9:2665–2668. doi: 10.1021/ol070900l. PubMed DOI

Gulevich A.V., Balenkova E.S., Nenajdenko V.G. The first example a diastereoselective Thio-Ugi reaction: A new synthetic approach to chiral imidazole derivatives. J. Org. Chem. 2007;72:7878–7885. doi: 10.1021/jo071030o. PubMed DOI

Mlostoń G., Mucha P., Urbaniak K., Broda K., Heimgartner H. Synthesis of optically active 1−(1-phenylethyl)-1H-imidazoles derived from 1-phenylethylamine. Helv. Chim. Acta. 2008;91:232–236. doi: 10.1002/hlca.200890028. DOI

Gerstenberg B.S., Lin J., Mimieux Y.S., Brown L.E., Oliver A.G., Konopelski J.P. Structural characterization of an enantiomerically pure amino acid imidazolide and direct formation of the β-lactam nucleus from an α-amino acid. Org. Lett. 2008;10:369–372. doi: 10.1021/ol7025922. PubMed DOI PMC

De Luca L. Naturally occurring and synthetic imidazoles: Their chemistry and their biological activities. Curr. Med. Chem. 2006;13:1–23. PubMed

Boiani M., González M. Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini-Rev. Med. Chem. 2005;5:409–424. doi: 10.2174/1389557053544047. PubMed DOI

Suwiński J., Szczepankeiwicz W., Świerczek K., Walczak K. Synthesis of chiral imidazole derivatives as purine precursors. Eur. J. Org. Chem. 2003:1080–1084.

Katsuki I., Motoda Y., Sunatsuki Y., Matsumoto N., Nakashima T., Kojima M. Spontaneous resolution induced by self-organization of chiral self-complementary cobalt(III) complexes with achiral tripod-type ligands containing three imidazole groups. J. Am. Chem. Soc. 2002;124:629–640. PubMed

Nakamura H., Fujii M., Sunatsuki Y., Kojima M., Matsumoto N. Cobalt(III) complexes of a tripodal ligand containing three imidazole groups: Properties and structures of racemic and optically active species. Eur. J. Inorg. Chem. 2008:1258–1267.

Bureš F., Szotkowski T., Kulhánek J., Pytela O., Ludwig M., Holčapek M. Novel nitrogen ligands based on imidazole derivatives and their application in asymmetric catalysis. Tetrahedron Asymmetry. 2006;17:900–907. doi: 10.1016/j.tetasy.2006.03.005. DOI

Hojabri L., Hartikka A., Moghaddam F.M., Arvidsson P.I. A new imidazole-containing imidazolidinone catalyst for organocatalyzed asymmetric conjugate addition of nitroalkanes to aldehydes. Adv. Synth. Catal. 2007;349:740–748. doi: 10.1002/adsc.200600316. DOI

Kotsuki H., Hayakawa H., Wakao M., Shimanouchi T., Ochi M. Synthesis of novel chiral diazole ligands for enantioselective addition of diethylzinc to benzaldehyde. Tetrahedron Asymmetry. 1995;6:2665–2668. doi: 10.1016/0957-4166(95)00352-P. PubMed DOI

Perl N.R., Leighton J.L. Enantioselective Imidazole-Directed Allylation of Aldimines and Ketimines. Org. Lett. 2007;9:3699–3701. PubMed

Shitama H., Katsuki T. Synthesis of metal-(pentadentate-salen) complexes: Asymmetric epoxidation with aqueous hydrogen peroxide and asymmetric cyclopropanation (salenH2: N,N’-bis(salicylidene)ethylene-1,2-diamine. Chem. Eur. J. 2007;13:4849–4858. PubMed

Gullotti M., Santagostini L., Pagliarin R., Granata A., Casella L. Synthesis and characterization of new chiral octadentate nitrogen ligands and related copper(II) complexes as catalysts for stereoselective oxidation of catechols. J. Mol. Catal. A: Chem. 2005;235:271–284. doi: 10.1016/j.molcata.2005.03.031. DOI

Hodgson R., Douthwaite R.E. Synthesis and asymmetric catalytic application of chiral imidazollium-phosphines derived from (1R,2R)-trans-diaminocyclohexane. J. Organomet. Chem. 2005;690:5822–5831. doi: 10.1016/j.jorganchem.2005.07.110. DOI

Sívek R., Pytela O., Bureš F. Design and synthesis of optically active 2−phenylimdiazolecarboxamides featuring amino acid motive. J. Heterocyclic Chem. 2008 in press.

Paul R., Brockman J.A., Hallett W.A., Hanifin J.W., Tarrant M.E., Torley L.W., Callahan F.M., Fabio P.F., Johnson B.D., Lenhard R. H., Schaub R.E., Wissner A. Imidazo[1,5-d][1,2,4]triazines as potential antiasthma agents. J. Med. Chem. 1985;28:1704–1716. doi: 10.1021/jm00149a029. PubMed DOI

Bull S.D., Davies S.G., Jones S., Sanganee H.J. Asymmetric alkylation using SuperQuat auxiliaries – an investigation into the synthesis and stability of enolates derived from 5,5-disubstituted oxazolidin-2-ones. J. Chem. Soc., Perkin Trans. 1. 1999:387–398.

Luzzio F.A. The Henry reaction: recent examples. Tetrahedron. 2001;57:915–945. doi: 10.1016/S0040-4020(00)00965-0. DOI

Evans D.A., Seidel D., Rueping M., Hon Wai Lam, Shaw J.T., Downey C.W. A new copper acetate-bis(oxazoline)-catalyzed, enantioselective Henry reaction. J. Am. Chem. Soc. 2003;125:12692–12693. PubMed

Gan C., Lai G., Zhang Z., Wang Z., Zhou M.-M. Efficient and enantioselective nitroaldol reaction catalyzed by copper Schiff-base complexes. Tetrahedron Asymmetry. 2006;17:725–728. doi: 10.1016/j.tetasy.2006.01.032. DOI

Trost B.M., Yeh V.S.C. A dinuclear Zn catalyst for the asymmetric nitroaldol (Henry) reaction. Angew. Chem. Int. Ed. Engl. 2002;41:861–863. doi: 10.1002/1521-3773(20020301)41:5<861::AID-ANIE861>3.0.CO;2-V. PubMed DOI

Sasai H., Suzuki T., Arai S., Arai T., Shibasaki M. Basic character of rare earth metal alkoxides. Utilization in catalytic C-C bond-forming reactions and catalytic asymmetric nitroaldol reactions. J. Am. Chem. Soc. 1992;114:4418–4420.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...