Cloning, purification, crystallization and preliminary X-ray analysis of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19407381
PubMed Central
PMC2675589
DOI
10.1107/s1744309109012032
PII: S1744309109012032
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis enzymologie genetika MeSH
- histidinkinasa MeSH
- klonování DNA MeSH
- krystalizace MeSH
- krystalografie rentgenová MeSH
- proteinkinasy chemie izolace a purifikace metabolismus MeSH
- proteiny huseníčku chemie izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CKI1 protein, Arabidopsis MeSH Prohlížeč
- histidinkinasa MeSH
- proteinkinasy MeSH
- proteiny huseníčku MeSH
The receiver domain (RD) of a sensor histidine kinase (HK) catalyses the transphosphorylation reaction during the action of HKs in hormonal and abiotic signalling in plants. Crystals of the recombinant RD of the Arabidopsis thaliana HK CYTOKININ-INDEPENDENT1 (CKI1(RD)) have been obtained by the hanging-drop vapour-diffusion method using ammonium sulfate as a precipitant and glycerol as a cryoprotectant. The crystals diffracted to approximately 2.4 A resolution on beamline BW7B of the DORIS-III storage ring. The diffraction improved significantly after the use of a non-aqueous cryoprotectant. Crystals soaked in Paratone-N diffracted to at least 2.0 A resolution on beamline BW7B and their mosaicity decreased more than tenfold. The crystals belonged to space group C222(1), with unit-cell parameters a = 54.46, b = 99.82, c = 79.94 A. Assuming the presence of one molecule of the protein in the asymmetric unit gives a Matthews coefficient V(M) of 2.33 A(3) Da(-1). A molecular-replacement solution has been obtained and structure refinement is in progress.
Zobrazit více v PubMed
Bradford, M. M. (1976). Anal. Biochem.72, 248–254. PubMed
Calva, E. & Oropeza, R. (2006). Microb. Ecol.51, 166–176. PubMed
Chang, C. & Stewart, R. C. (1998). Plant Physiol.117, 723–731. PubMed PMC
Cohen, S. X., Ben Jelloul, M., Long, F., Vagin, A., Knipscheer, P., Lebbink, J., Sixma, T. K., Lamzin, V. S., Murshudov, G. N. & Perrakis, A. (2008). Acta Cryst. D64, 49–60. PubMed PMC
Hwang, I. & Sheen, J. (2001). Nature (London), 413, 383–389. PubMed
Hoch, J. A. (2000). Curr. Opin. Microbiol.3, 165–170. PubMed
Kabsch, W. (1993). J. Appl. Cryst.26, 795–800.
Kakimoto, T. (1996). Science, 274, 982–985. PubMed
Keegan, R. M. & Winn, M. D. (2007). Acta Cryst. D63, 447–457. PubMed
Laemmli, U. K. (1970). Nature (London), 227, 680–685. PubMed
Matthews, B. W. (1968). J. Mol. Biol.33, 491–497. PubMed
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst.40, 658–674. PubMed PMC
Mizuno, T. (2005). Biosci. Biotechnol. Biochem.69, 2263–2276. PubMed
Muller-Dieckmann, H. J., Grantz, A. A. & Kim, S.-H. (1999). Structure, 7, 1547–1556. PubMed
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst. D53, 240–255. PubMed
Notredame, C., Higgins, D. & Heringa, J. (2000). J. Mol. Biol.302, 205–217. PubMed
Skerker, J. M., Perchuk, B. S., Siryaporn, A., Lubin, E. A., Ashenberg, O., Goulian, M. & Laub, M. T. (2008). Cell, 133, 1043–1054. PubMed PMC
Sola, M., Gomis-Ruth, F. X., Serrano, L., Gonzalez, A. & Coll, M. (1999). J. Mol. Biol.285, 675–687. PubMed
Stock, A. M., Mottonen, J. M., Stock, J. B. & Schutt, C. E. (1989). Nature (London), 337, 745–749. PubMed
To, J. P. & Kieber, J. J. (2008). Trends Plant Sci.13, 85–92. PubMed
Tran, L. S., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Proc. Natl Acad. Sci. USA, 104, 20623–20628. PubMed PMC
Wilcock, D., Pisabarro, M. T., López-Hernandez, E., Serrano, L. & Coll, M. (1998). Acta Cryst. D54, 378–385. PubMed
Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., Yamashino, T. & Mizuno, T. (2001). Plant Cell Physiol.42, 1017–1023. PubMed